Ensemble Deep Learning for Sustainable Multimodal UAV Classification

被引:16
作者
McCoy, James [1 ]
Rawal, Atul [1 ]
Rawat, Danda B. [1 ]
Sadler, Brian M. [2 ]
机构
[1] Howard Univ, Dept Elect & Comp Sci, Washington, DC 20059 USA
[2] US Army, Res Lab, Adelphi, MD 20783 USA
关键词
Feature extraction; Convolutional neural networks; Convolution; Hidden Markov models; Acoustics; Deep learning; Autonomous aerial vehicles; Ensemble deep learning; multi-modal UAV classification; UAV detection; machine learning; CNN;
D O I
10.1109/TITS.2022.3170643
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Unmanned aerial vehicles (UAVs) have increasingly shown to be useful in civilian applications (such as agriculture, public safety, surveillance) and mission critical military applications. Despite the growth in popularity and applications, UAVs have also been used for malicious purposes. In such instances, their timely detection and identification has garnished rising interest from government, industry and academia. While much work has been done for detecting UAVs, there still exist limitations related to the impact of extreme environmental conditions and big dataset requirements. This paper proposes a novel ensemble deep learning framework that has hybrid synthetic and deep features to detect unauthorized or malicious UAVs by using acoustic, image/video and wireless radio frequency (RF) signals for robust UAV detection and classification. We present the performance evaluation of the proposed approach using numerical results obtained from experiments using acoustic, image/video and wireless RF signals. The proposed approach outperforms the existing related approaches for detecting malicious UAVs.
引用
收藏
页码:15425 / 15434
页数:10
相关论文
共 50 条
  • [41] An Ensemble of Deep Learning-Based Multi-Model for ECG Heartbeats Arrhythmia Classification
    Essa, Ehab
    Xie, Xianghua
    IEEE ACCESS, 2021, 9 : 103452 - 103464
  • [42] An ensemble deep-learning approach for single-trial EEG classification of vibration intensity
    Alsuradi, Haneen
    Park, Wanjoo
    Eid, Mohamad
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (05)
  • [43] Ensemble-Based Deep Learning Model for Network Traffic Classification
    Aouedi, Ons
    Piamrat, Kandaraj
    Parrein, Benoit
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (04): : 4124 - 4135
  • [44] Automated Gastrointestinal Tract Classification Via Deep Learning and The Ensemble Method
    Almanifi, Omair Rashed Abdulwareth
    Razman, Mohd Azraai Mohd
    Khairuddin, Ismail Mohd
    Abdullah, Muhammad Amirul
    Majeedi, Anwar P. P. Abdul
    2021 21ST INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2021), 2021, : 602 - 606
  • [45] A UNIFIED MULTIMODAL DEEP LEARNING FRAMEWORK FOR REMOTE SENSING IMAGERY CLASSIFICATION
    Hong, Danfeng
    Gao, Lianru
    Wu, Xin
    Yao, Jing
    Yokoya, Naoto
    Zhang, Bing
    2021 11TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2021,
  • [46] Speech Emotion Recognition Using Deep Neural Networks, Transfer Learning, and Ensemble Classification Techniques
    Mihalache, Serban
    Burileanu, Dragos
    ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY, 2023, 26 (3-4): : 375 - 387
  • [47] Deep and Ensemble Learning Based Land Use and Land Cover Classification
    Benbriqa, Hicham
    Abnane, Ibtissam
    Idri, Ali
    Tabiti, Khouloud
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT III, 2021, 12951 : 588 - 604
  • [48] A Survey of Audio Classification Using Deep Learning
    Zaman, Khalid
    Sah, Melike
    Direkoglu, Cem
    Unoki, Masashi
    IEEE ACCESS, 2023, 11 : 106620 - 106649
  • [49] Classification of Pulmonary Diseases Using a Deep Learning Stacking Ensemble Model
    Sadoon, Ruaa N.
    Chaid, Adala M.
    Informatica (Slovenia), 2024, 48 (14): : 43 - 64
  • [50] CGBNet: A Deep Learning Framework for Compost Classification
    Gangopadhyay, Suchisrit
    Zhai, Anthony
    IEEE ACCESS, 2022, 10 : 90068 - 90078