Deep Reinforcement Learning for Cyber Security

被引:168
|
作者
Thanh Thi Nguyen [1 ]
Reddi, Vijay Janapa [2 ]
机构
[1] Deakin Univ, Sch Informat Technol, Melbourne Burwood Campus, Burwood, Vic 3125, Australia
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
Computer crime; Games; Deep learning; Reinforcement learning; Internet of Things; Estimation; Correlation; Cyber defense; cyber security; cyberattacks; deep learning; deep reinforcement learning (DRL); Internet of Things (IoT); IoT; review; survey; NETWORK INTRUSION DETECTION; MULTIAGENT SYSTEMS; PHYSICAL SYSTEMS; GAME; AUTHENTICATION; INTERNET; IDENTIFICATION; ALGORITHMS; CHALLENGES; ATTACKS;
D O I
10.1109/TNNLS.2021.3121870
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The scale of Internet-connected systems has increased considerably, and these systems are being exposed to cyberattacks more than ever. The complexity and dynamics of cyberattacks require protecting mechanisms to be responsive, adaptive, and scalable. Machine learning, or more specifically deep reinforcement learning (DRL), methods have been proposed widely to address these issues. By incorporating deep learning into traditional RL, DRL is highly capable of solving complex, dynamic, and especially high-dimensional cyber defense problems. This article presents a survey of DRL approaches developed for cyber security. We touch on different vital aspects, including DRL-based security methods for cyber-physical systems, autonomous intrusion detection techniques, and multiagent DRL-based game theory simulations for defense strategies against cyberattacks. Extensive discussions and future research directions on DRL-based cyber security are also given. We expect that this comprehensive review provides the foundations for and facilitates future studies on exploring the potential of emerging DRL to cope with increasingly complex cyber security problems.
引用
收藏
页码:3779 / 3795
页数:17
相关论文
共 50 条
  • [41] Machine learning and cyber security
    Karius, Sebastian
    Knoechel, Mandy
    Hesse, Sascha
    Reiprich, Tim
    IT-INFORMATION TECHNOLOGY, 2023, 65 (4-5): : 142 - 154
  • [42] A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning
    Morales, Eduardo F.
    Murrieta-Cid, Rafael
    Becerra, Israel
    Esquivel-Basaldua, Marco A.
    INTELLIGENT SERVICE ROBOTICS, 2021, 14 (05) : 773 - 805
  • [43] A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning
    Eduardo F. Morales
    Rafael Murrieta-Cid
    Israel Becerra
    Marco A. Esquivel-Basaldua
    Intelligent Service Robotics, 2021, 14 : 773 - 805
  • [44] Smart Security Audit: Reinforcement Learning with a Deep Neural Network Approximator
    Pozdniakov, Konstantin
    Alonso, Eduardo
    Stankovic, Vladimir
    Tam, Kimberly
    Jones, Kevin
    2020 INTERNATIONAL CONFERENCE ON CYBER SITUATIONAL AWARENESS, DATA ANALYTICS AND ASSESSMENT (CYBER SA 2020), 2020,
  • [45] Robust Deep Reinforcement Learning for Security and Safety in Autonomous Vehicle Systems
    Ferdowsi, Aidin
    Challita, Ursula
    Saad, Walid
    Mandayam, Narayan B.
    2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 307 - 312
  • [46] An intelligent cyber security phishing detection system using deep learning techniques
    Ala Mughaid
    Shadi AlZu’bi
    Adnan Hnaif
    Salah Taamneh
    Asma Alnajjar
    Esraa Abu Elsoud
    Cluster Computing, 2022, 25 : 3819 - 3828
  • [47] Cyber Security Threats Detection in Internet of Things Using Deep Learning Approach
    Ullah, Farhan
    Naeem, Hamad
    Jabbar, Sohail
    Khalid, Shehzad
    Latif, Muhammad Ahsan
    Al-Turjman, Fadi
    Mostarda, Leonardo
    IEEE ACCESS, 2019, 7 : 124379 - 124389
  • [48] An intelligent cyber security phishing detection system using deep learning techniques
    Mughaid, Ala
    AlZu'bi, Shadi
    Hnaif, Adnan
    Taamneh, Salah
    Alnajjar, Asma
    Abu Elsoud, Esraa
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (06): : 3819 - 3828
  • [49] Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study
    Ferrag, Mohamed Amine
    Maglaras, Leandros
    Moschoyiannis, Sotiris
    Janicke, Helge
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2020, 50
  • [50] Anomaly detection in cyber security attacks on networks using MLP deep learning
    Teoh, T. T.
    Chiew, Graeme
    Franco, Edwin J.
    Ng, P. C.
    Benjamin, M. P.
    Goh, Y. J.
    2018 INTERNATIONAL CONFERENCE ON SMART COMPUTING AND ELECTRONIC ENTERPRISE (ICSCEE), 2018,