Deep Reinforcement Learning for Cyber Security

被引:168
|
作者
Thanh Thi Nguyen [1 ]
Reddi, Vijay Janapa [2 ]
机构
[1] Deakin Univ, Sch Informat Technol, Melbourne Burwood Campus, Burwood, Vic 3125, Australia
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
Computer crime; Games; Deep learning; Reinforcement learning; Internet of Things; Estimation; Correlation; Cyber defense; cyber security; cyberattacks; deep learning; deep reinforcement learning (DRL); Internet of Things (IoT); IoT; review; survey; NETWORK INTRUSION DETECTION; MULTIAGENT SYSTEMS; PHYSICAL SYSTEMS; GAME; AUTHENTICATION; INTERNET; IDENTIFICATION; ALGORITHMS; CHALLENGES; ATTACKS;
D O I
10.1109/TNNLS.2021.3121870
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The scale of Internet-connected systems has increased considerably, and these systems are being exposed to cyberattacks more than ever. The complexity and dynamics of cyberattacks require protecting mechanisms to be responsive, adaptive, and scalable. Machine learning, or more specifically deep reinforcement learning (DRL), methods have been proposed widely to address these issues. By incorporating deep learning into traditional RL, DRL is highly capable of solving complex, dynamic, and especially high-dimensional cyber defense problems. This article presents a survey of DRL approaches developed for cyber security. We touch on different vital aspects, including DRL-based security methods for cyber-physical systems, autonomous intrusion detection techniques, and multiagent DRL-based game theory simulations for defense strategies against cyberattacks. Extensive discussions and future research directions on DRL-based cyber security are also given. We expect that this comprehensive review provides the foundations for and facilitates future studies on exploring the potential of emerging DRL to cope with increasingly complex cyber security problems.
引用
收藏
页码:3779 / 3795
页数:17
相关论文
共 50 条
  • [1] Cyber-security and reinforcement learning - A brief survey
    Adawadkar, Amrin Maria Khan
    Kulkarni, Nilima
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 114
  • [2] A Survey of Deep Learning Methods for Cyber Security
    Berman, Daniel S.
    Buczak, Anna L.
    Chavis, Jeffrey S.
    Corbett, Cherita L.
    INFORMATION, 2019, 10 (04)
  • [3] Federated Deep Learning for Cyber Security in the Internet of Things: Concepts, Applications, and Experimental Analysis
    Ferrag, Mohamed Amine
    Friha, Othmane
    Maglaras, Leandros
    Janicke, Helge
    Shu, Lei
    IEEE ACCESS, 2021, 9 : 138509 - 138542
  • [4] A Systematic Review on Machine Learning and Deep Learning Models for Electronic Information Security in Mobile Networks
    Gupta, Chaitanya
    Johri, Ishita
    Srinivasan, Kathiravan
    Hu, Yuh-Chung
    Qaisar, Saeed Mian
    Huang, Kuo-Yi
    SENSORS, 2022, 22 (05)
  • [5] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [6] Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study
    Ferrag, Mohamed Amine
    Maglaras, Leandros
    Moschoyiannis, Sotiris
    Janicke, Helge
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2020, 50
  • [7] On the Effectiveness of Machine and Deep Learning for Cyber Security
    Apruzzese, Giovanni
    Colajanni, Michele
    Ferretti, Luca
    Guido, Alessandro
    Marchetti, Mirco
    2018 10TH INTERNATIONAL CONFERENCE ON CYBER CONFLICT (CYCON X): MAXIMISING EFFECTS, 2018, : 371 - 389
  • [8] Offloading Mechanisms Based on Reinforcement Learning and Deep Learning Algorithms in the Fog Computing Environment
    Abdulazeez, Dezheen H.
    Askar, Shavan K.
    IEEE ACCESS, 2023, 11 : 12554 - 12585
  • [9] From Reinforcement Learning to Deep Reinforcement Learning: An Overview
    Agostinelli, Forest
    Hocquet, Guillaume
    Singh, Sameer
    Baldi, Pierre
    BRAVERMAN READINGS IN MACHINE LEARNING: KEY IDEAS FROM INCEPTION TO CURRENT STATE, 2018, 11100 : 298 - 328
  • [10] IoTSecUT: Uncertainty-Based Hybrid Deep Learning Approach for Superior IoT Security Amidst Evolving Cyber Threats
    Mengara, Axel Gedeon Mengara
    Yoo, Younghwan
    Leung, Victor C. M.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (16): : 27715 - 27731