Contactless Blood Oxygen Saturation Estimation from Facial Videos Using Deep Learning

被引:4
|
作者
Cheng, Chun-Hong [1 ]
Yuen, Zhikun [2 ]
Chen, Shutao [3 ]
Wong, Kwan-Long [3 ]
Chin, Jing-Wei [3 ]
Chan, Tsz-Tai [3 ]
So, Richard H. Y. [3 ,4 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[2] Univ Ottawa, Dept Biomol Sci, Ottawa, ON K1H 8M5, Canada
[3] Hong Kong Sci & Technol Pk, Hong Kong, Peoples R China
[4] Hong Kong Univ Sci & Technol, Dept Ind Engn & Decis Analyt, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 03期
关键词
blood oxygen saturation measurement; deep learning; facial videos; non-contact monitoring; remote health monitoring;
D O I
10.3390/bioengineering11030251
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Blood oxygen saturation (SpO2) is an essential physiological parameter for evaluating a person's health. While conventional SpO2 measurement devices like pulse oximeters require skin contact, advanced computer vision technology can enable remote SpO2 monitoring through a regular camera without skin contact. In this paper, we propose novel deep learning models to measure SpO2 remotely from facial videos and evaluate them using a public benchmark database, VIPL-HR. We utilize a spatial-temporal representation to encode SpO2 information recorded by conventional RGB cameras and directly pass it into selected convolutional neural networks to predict SpO2. The best deep learning model achieves 1.274% in mean absolute error and 1.71% in root mean squared error, which exceed the international standard of 4% for an approved pulse oximeter. Our results significantly outperform the conventional analytical Ratio of Ratios model for contactless SpO2 measurement. Results of sensitivity analyses of the influence of spatial-temporal representation color spaces, subject scenarios, acquisition devices, and SpO2 ranges on the model performance are reported with explainability analyses to provide more insights for this emerging research field.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Deep Active Learning with Range Feedback for Facial Age Estimation
    Bhattacharya, Aditya R.
    Chakraborty, Shayok
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [42] Facial Expression Recognition Using Deep Learning
    Shehu, Harisu Abdullahi
    Sharif, Md Haidar
    Uyaver, Sahin
    FOURTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2020), 2021, 2334
  • [43] Deep learning evaluation of biomarkers from echocardiogram videos
    Hughes, J. Weston
    Yuan, Neal
    He, Bryan
    Ouyang, Jiahong
    Ebinger, Joseph
    Botting, Patrick
    Lee, Jasper
    Theurer, John
    Tooley, James E.
    Nieman, Koen
    Lungren, Matthew P.
    Liang, David H.
    Schnittger, Ingela
    Chen, Jonathan H.
    Ashley, Euan A.
    Cheng, Susan
    Ouyang, David
    Zou, James Y.
    EBIOMEDICINE, 2021, 73
  • [44] A novel comparative deep learning framework for facial age estimation
    Fatma S. Abousaleh
    Tekoing Lim
    Wen-Huang Cheng
    Neng-Hao Yu
    M. Anwar Hossain
    Mohammed F. Alhamid
    EURASIP Journal on Image and Video Processing, 2016
  • [45] Facial Gender Classification Using Deep Learning
    ELKarazle, Khaled
    Raman, Valliappan
    Then, Patrick
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR 2021), 2022, 417 : 598 - 607
  • [46] Cuffless blood pressure estimation from photoplethysmography using deep convolutional neural network and transfer learning
    Koparir, Hueseyin Murat
    Arslan, Ozkan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 93
  • [47] Towards Autonomous Physiological Signal Extraction From Thermal Videos Using Deep Learning
    Das, Kapotaksha
    Abouelenien, Mohamed
    Burzo, Mihai
    Elson, John
    Prakah-Asante, Kwaku
    Maranville, Clay
    PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, ICMI 2023, 2023, : 584 - 593
  • [48] Anomaly Detection in Traffic Surveillance Videos Using Deep Learning
    Khan, Sardar Waqar
    Hafeez, Qasim
    Khalid, Muhammad Irfan
    Alroobaea, Roobaea
    Hussain, Saddam
    Iqbal, Jawaid
    Almotiri, Jasem
    Ullah, Syed Sajid
    SENSORS, 2022, 22 (17)
  • [49] Automatic handgun detection alarm in videos using deep learning
    Olmos, Roberto
    Tabik, Siham
    Herrera, Francisco
    NEUROCOMPUTING, 2018, 275 : 66 - 72
  • [50] Deep learning for surgical phase recognition using endoscopic videos
    Guedon, Annetje C. P.
    Meij, Senna E. P.
    Osman, Karim N. M. M. H.
    Kloosterman, Helena A.
    van Stralen, Karlijn J.
    Grimbergen, Matthijs C. M.
    Eijsbouts, Quirijn A. J.
    van den Dobbelsteen, John J.
    Twinanda, Andru P.
    SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2021, 35 (11): : 6150 - 6157