Contactless Blood Oxygen Saturation Estimation from Facial Videos Using Deep Learning

被引:4
|
作者
Cheng, Chun-Hong [1 ]
Yuen, Zhikun [2 ]
Chen, Shutao [3 ]
Wong, Kwan-Long [3 ]
Chin, Jing-Wei [3 ]
Chan, Tsz-Tai [3 ]
So, Richard H. Y. [3 ,4 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[2] Univ Ottawa, Dept Biomol Sci, Ottawa, ON K1H 8M5, Canada
[3] Hong Kong Sci & Technol Pk, Hong Kong, Peoples R China
[4] Hong Kong Univ Sci & Technol, Dept Ind Engn & Decis Analyt, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 03期
关键词
blood oxygen saturation measurement; deep learning; facial videos; non-contact monitoring; remote health monitoring;
D O I
10.3390/bioengineering11030251
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Blood oxygen saturation (SpO2) is an essential physiological parameter for evaluating a person's health. While conventional SpO2 measurement devices like pulse oximeters require skin contact, advanced computer vision technology can enable remote SpO2 monitoring through a regular camera without skin contact. In this paper, we propose novel deep learning models to measure SpO2 remotely from facial videos and evaluate them using a public benchmark database, VIPL-HR. We utilize a spatial-temporal representation to encode SpO2 information recorded by conventional RGB cameras and directly pass it into selected convolutional neural networks to predict SpO2. The best deep learning model achieves 1.274% in mean absolute error and 1.71% in root mean squared error, which exceed the international standard of 4% for an approved pulse oximeter. Our results significantly outperform the conventional analytical Ratio of Ratios model for contactless SpO2 measurement. Results of sensitivity analyses of the influence of spatial-temporal representation color spaces, subject scenarios, acquisition devices, and SpO2 ranges on the model performance are reported with explainability analyses to provide more insights for this emerging research field.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Contactless blood oxygen estimation from face videos: A multi-model fusion method based on deep learning
    Hu, Min
    Wu, Xia
    Wang, Xiaohua
    Xing, Yan
    An, Ning
    Shi, Piao
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 81
  • [2] Heart Rate and Oxygen Level Estimation from Facial Videos Using a Hybrid Deep Learning Model
    Zheng, Yufeng
    MULTIMODAL IMAGE EXPLOITATION AND LEARNING 2024, 2024, 13033
  • [3] A non-contact oxygen saturation estimation using Video Magnification and a Deep Learning method
    Escobedo-Gordillo, Andres
    Brieva, Jorge
    Moya-Albor, Ernesto
    Ponce, Hiram
    2023 19TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, SIPAIM, 2023,
  • [4] Quantitative Multidimensional Stress Assessment from Facial Videos using Deep Learning
    He, Lin
    Ma, Jiachen
    Ahamed, Sheikh Iqbal
    Saxena, Piyush
    2022 IEEE 46TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2022), 2022, : 710 - 715
  • [5] y Pain Detection from Facial Videos Using Two-Stage Deep Learning
    Menchetti, Guglielmo
    Chen, Zhanli
    Wilkie, Diana J.
    Ansari, Rashid
    Yardimci, Yasemin
    Cetin, A. Enis
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [6] A Facial Pose Estimation Algorithm Using Deep Learning
    Xu, Xiao
    Wu, Lifang
    Wang, Ke
    Ma, Yukun
    Qi, Wei
    BIOMETRIC RECOGNITION, CCBR 2015, 2015, 9428 : 669 - 676
  • [7] A Deep Learning Framework with Optimizations for Facial Expression and Emotion Recognition from Videos
    Nukathati, Ranjit Kumar
    Nagella, Uday Bhaskar
    Kumar, A. P. Siva
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2025, 16 (03) : 217 - 229
  • [8] Counting Cars from Aerial Videos Using Deep Learning
    Polidoro, Caio H. S.
    de Castro, Wellington V. M.
    Marcato, Jose
    Salgado Filho, Geison
    Matsubara, Edson T.
    PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2019, PT I, 2019, 11804 : 637 - 649
  • [9] Deep Learning Framework for Density Estimation of Crowd Videos
    Anees, Muhammed, V
    Kumar, Santhosh G.
    PROCEEDINGS OF THE 2018 8TH INTERNATIONAL SYMPOSIUM ON EMBEDDED COMPUTING AND SYSTEM DESIGN (ISED 2018), 2018, : 16 - 20