RDP-GAN: A Renyi-Differential Privacy Based Generative Adversarial Network

被引:6
|
作者
Ma, Chuan [1 ,2 ]
Li, Jun [3 ]
Ding, Ming [4 ]
Liu, Bo [5 ]
Wei, Kang [3 ]
Weng, Jian [6 ]
Poor, H. Vincent [7 ]
机构
[1] Zhejiang Lab, Hangzhou 311121, Zhejiang, Peoples R China
[2] Southeast Univ, Key Lab Comp Network & Informat Integrat, Minist Educ, Nanjing 211189, Jiangsu, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing 210094, Jiangsu, Peoples R China
[4] CSIRO, Data61, Sydney, NSW 2015, Australia
[5] Univ Technol Sydney, Sydney, NSW 2007, Australia
[6] Jinan Univ, Guangzhou 510632, Guangdong, Peoples R China
[7] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Privacy; Training; Generative adversarial networks; Generators; Tuning; Estimation; Differential privacy; Adaptive noise tuning algorithm; generative adversarial network; renyi-differential privacy;
D O I
10.1109/TDSC.2022.3233580
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Generative adversarial networks (GANs) have attracted increasing attention recently owing to their impressive abilities to generate realistic samples with high privacy protection. Without directly interacting with training examples, the generative model can be used to estimate the underlying distribution of an original dataset while the discriminator can examine model quality of the generated samples by comparing the label values with training examples. In considering privacy issues in GANS, existing works focus on perturbing the parameters and analyzing the corresponding privacy protection capability, and the parameters are not directly exchanged between the generator and discriminator in GANs. Thus, in this work, we propose a Renyi-differentially private-GAN (RDP-GAN), which achieves differential privacy (DP) in a GAN by carefully adding random Gaussian noise to the value of the exchanged loss function during training. Moreover, we derive analytical results characterizing the total privacy loss under the subsampling method and cumulative iterations, which show its effectiveness for the privacy budget allocation. In addition, in order to mitigate the negative impact of injecting noises, we enhance the proposed algorithm by adding an adaptive noise tuning step, which will change the amount of added noise according to the testing accuracy. Through extensive experimental results, we verify that the proposed algorithm can achieve a better privacy level while producing high-quality samples compared with a benchmark DP-GAN scheme based on noise perturbation on training gradients.
引用
收藏
页码:4838 / 4852
页数:15
相关论文
共 50 条
  • [1] Differential Privacy Images Protection Based on Generative Adversarial Network
    Yang, Ren
    Ma, Xuebin
    Bai, Xiangyu
    Su, Xiangdong
    2020 IEEE 19TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2020), 2020, : 1688 - 1695
  • [2] Desensitized Financial Data Generation Based on Generative Adversarial Network and Differential Privacy
    Zhang, Fan
    Wang, Luyao
    Zhang, Xinhong
    BIG DATA MINING AND ANALYTICS, 2025, 8 (01): : 103 - 117
  • [3] RDP-WGAN: Image Data Privacy Protection based on Renyi Differential Privacy
    Ma, Xuebin
    Yang, Ren
    Zheng, Maobo
    2022 18TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN, 2022, : 320 - 324
  • [4] Wasserstein Generative Adversarial Networks Based Differential Privacy Metaverse Data Sharing
    Liu, Hai
    Xu, Dequan
    Tian, Youliang
    Peng, Changgen
    Wu, Zhenqiang
    Wang, Ziyue
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (11) : 6348 - 6359
  • [5] Collaborative-GAN: An Approach for Stabilizing the Training Process of Generative Adversarial Network
    Megahed, Mohammed
    Mohammed, Ammar
    IEEE ACCESS, 2024, 12 : 138716 - 138735
  • [6] CDE-GAN: Cooperative Dual Evolution-Based Generative Adversarial Network
    Chen, Shiming
    Wang, Wenjie
    Xia, Beihao
    You, Xinge
    Peng, Qinmu
    Cao, Zehong
    Ding, Weiping
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (05) : 986 - 1000
  • [7] DIFA-GAN: Differential Attention-Guided Generative Adversarial Network for Unsupervised Video Forecasting
    Jin, Beibei
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1795 - 1799
  • [8] Compressive Privacy Generative Adversarial Network
    Tseng, Bo-Wei
    Wu, Pei-Yuan
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2020, 15 : 2499 - 2513
  • [9] Massive MIMO CSI Feedback Based on Generative Adversarial Network
    Tolba, Bassant
    Elsabrouty, Maha
    Abdu-Aguye, Mubarak G.
    Gacanin, Haris
    Kasem, Hossam Mohamed
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (12) : 2805 - 2808
  • [10] HOT-GAN: Hilbert Optimal Transport for Generative Adversarial Network
    Li, Qian
    Wang, Zhichao
    Xia, Haiyang
    Li, Gang
    Cao, Yanan
    Yao, Lina
    Xu, Guandong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 14