Hypergeometric functions over finite fields

被引:6
作者
Otsubo, Noriyuki [1 ]
机构
[1] Chiba Univ, Dept Math & Informat, Inage, Chiba 2638522, Japan
关键词
Hypergeometric functions; Finite fields; Exponential sums; Zeta functions; ZETA-FUNCTIONS; TRANSFORMATIONS;
D O I
10.1007/s11139-023-00777-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a definition of generalized hypergeometric functions over finite fields using modified Gauss sums, which enables us to find clear analogy with classical hypergeometric functions over the complex numbers. We study their fundamental properties and prove summation formulas, transformation formulas and product formulas. An application to zeta functions of K3-surfaces is given. In the appendix, we give an elementary proof of the Davenport-Hasse multiplication formula for Gauss sums.
引用
收藏
页码:55 / 104
页数:50
相关论文
共 27 条
[1]   Zeta functions of an infinite family of K3 surfaces [J].
Ahlgren, S ;
Ono, K ;
Penniston, D .
AMERICAN JOURNAL OF MATHEMATICS, 2002, 124 (02) :353-368
[2]  
Asakura M, 2021, Arxiv, DOI arXiv:2109.05699
[3]  
Bailey W. N., 1964, GEN HYPERGEOMETRIC S
[4]   Products of generalized hypergeometric series [J].
Bailey, WN .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1928, 28 :242-254
[5]  
Davenport H, 1935, J REINE ANGEW MATH, V172, P151
[6]  
Erdelyi A., 1953, Higher Transcendental Functions, VI
[7]   A QUADRATIC HYPERGEOMETRIC 2F1 TRANSFORMATION OVER FINITE FIELDS [J].
Evans, Ron ;
Greene, John .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (03) :1071-1076
[8]   Clausen's theorem and hypergeometric functions over finite fields [J].
Evans, Ron ;
Greene, John .
FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (01) :97-109
[9]   Hypergeometric Functions Over Finite Fields [J].
Fuselier, Jenny ;
Long, Ling ;
Ramakrishna, Ravi ;
Swisher, Holly ;
Tu, Fang-Ting .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 280 (1382) :1-+
[10]  
Gauss CF., 1876, Werke, P207