Microscopic mechanism of CO2 adsorption on M2+(M = Fe, Ca, Mg)-doped kaolinite (001) surface: DFT calculations

被引:0
|
作者
Chen, Jun [1 ]
Shang, Huanhuan [1 ]
Ling, Yunjia [1 ]
Shu, Qingdong [1 ]
Sun, Yu [1 ]
Min, Fanfei [1 ]
机构
[1] Anhui Univ Sci & Technol, Dept Mat Sci & Engn, Huainan 232001, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Kaolinite (001) surface; CO2; adsorption; Lattice defects; Density functional theory; Clay adsorbents; ADSORBENTS; ZEOLITES; CAPTURE;
D O I
10.1016/j.chemphys.2024.112212
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To investigate the microscopic mechanism of CO2 adsorption on the M2+ (M = Fe, Ca, Mg)-doped kaolinite (denoted the M2+-Kao) (0 0 1) surface of low-priced metal cation, density functional theory (DFT) was employed to simulate CO2 adsorption on the perfect-phase kaolinite (denoted Kao) (0 0 1) surface and the M2+-Kao (0 0 1) surface. The results show that M2+ doping mainly enhances the activity of H atoms on the surface, and the order of CO2 adsorption on M2+-Kao (0 0 1) surface was Fe2+-Kao > Ca2+-Kao > Mg2+-Kao. The adsorption energy calculation results indicate that CO2 can be stably adsorbed on both the Kao (0 0 1) surface and the M2+-Kao (0 0 1) surface. The adsorption mechanism of CO2 on the M2+-Kao (0 0 1) surface involves the combined action of hydrogen bonding and electrostatic interactions, with the latter being the main contributor. The results provide valuable theoretical and technical insights for the preparation of clay-based CO2 mineralized functional materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] First principles study on the adsorption of CO2 and H2O on the K2CO3 (001) surface
    Gao, Hongwei
    Pishney, Stephen
    Janik, Michael J.
    SURFACE SCIENCE, 2013, 609 : 140 - 146
  • [32] Adsorption of CO2 at ZnO: A Surface Structure Effect from DFT+U Calculations
    Tang, Qian-Lin
    Luo, Qng-Hong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (44) : 22954 - 22966
  • [33] Unveiling the CO2 adsorption capabilities of biphenylene network monolayers through DFT calculations
    Lima, K. A. Lopes
    Ribeiro Junior, L. A.
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 232
  • [34] Theoretical study on the mechanism of CO2 adsorption and reduction by single-atom M (M = Cu, Co, Ni) doping C2N
    Gao, Zhiyan
    Huang, Zhiling
    Meng, Yue
    Tang, Haodong
    Ni, Zheming
    Xia, Shengjie
    CHEMICAL PHYSICS LETTERS, 2022, 804
  • [35] Disclosing the microscopic mechanism and adsorption properties of CO2 capture in N-isopropylethylenediamine appended M2(dobpdc) series
    Zhang, Hui
    Yang, Li-Ming
    Pan, Hui
    Ganz, Eric
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (42) : 24614 - 24623
  • [36] A computational study of N2 adsorption on aromatic metal Mg16M;(M=Be, Mg, and Ca) nanoclusters
    Dehghan, Mahmood Reza
    Ahmadi, Sara
    Kotena, Zahrabatoul Mosapour
    Niakousari, Mehrdad
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2021, 105
  • [37] Effect of M-Doped (M = Cr, Fe, Co, and Nb) V2O5/TiO2(001) on Mercury Oxidation: The Insights from DFT Calculation
    Gao, Yangyan
    Li, Zhenxing
    Hao, Yanhong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (50) : 27963 - 27975
  • [38] Comparative computational study of CO2 dissociation and hydrogenation over Fe-M (M = Pd, Ni, Co) bimetallic catalysts: The effect of surface metal content
    Nie, Xiaowa
    Wang, Haozhi
    Liang, Zhiming
    Yu, Zhenzi
    Zhang, Jiajin
    Janik, Michael J.
    Guo, Xinwen
    Song, Chunshan
    JOURNAL OF CO2 UTILIZATION, 2019, 29 : 179 - 195
  • [39] Revealing the mechanism of oxygen vacancy defect for CO2 adsorption and diffusion on CaO: DFT and experimental study
    Yan, Xianyao
    Duan, Chenyu
    Yu, Shuihua
    Dai, Bing
    Sun, Chaoying
    Chu, Huaqiang
    JOURNAL OF CO2 UTILIZATION, 2024, 79
  • [40] DFT study of ferric ion interaction with passive layer on chalcopyrite surface: Elemental sulfur, defective sulfur and replacement of M2+(M=Cu and Fe) ions
    Nourmohamadi, Hossein
    Esra, Mehdi D.
    Aghazadeh, Valeh
    COMPUTATIONAL CONDENSED MATTER, 2021, 26