Permissible domain walls in monoclinic MAB ferroelectric phases

被引:2
作者
Biran, Ido [1 ]
Gorfman, Semen [1 ]
机构
[1] Tel Aviv Univ, Dept Mat Sci & Engn, Wolfson Bldg Mech Engn, IL-6997801 Tel Aviv, Israel
来源
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES | 2024年 / 80卷
基金
以色列科学基金会;
关键词
ferroelastic domains; monoclinic symmetry; X-ray diffraction; POLARIZATION ROTATION; CRYSTALS; SYSTEMS;
D O I
10.1107/S205327332300921X
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The concept of monoclinic ferroelectric phases has been extensively used over recent decades for the understanding of crystallographic structures of ferroelectric materials. Monoclinic phases have been actively invoked to describe the phase boundaries such as the so-called morphotropic phase boundary in functional perovskite oxides. These phases are believed to play a major role in the enhancement of such functional properties as dielectricity and electromechanical coupling through rotation of spontaneous polarization and/or modification of the rich domain microstructures. Unfortunately, such microstructures remain poorly understood due to the complexity of the subject. The goal of this work is to formulate the geometrical laws behind the monoclinic domain microstructures. Specifically, the result of previous work [Gorfman et al. (2022). Acta Cryst. A78, 158-171] is implemented to catalog and outline some properties of permissible domain walls that connect 'strain' domains with monoclinic (M-A/M-B type) symmetry, occurring in ferroelectric perovskite oxides. The term 'permissible' [Fousek & Janovec (1969). J. Appl. Phys. 40, 135-142] pertains to the domain walls connecting a pair of 'strain' domains without a lattice mismatch. It was found that 12 monoclinic domains may form pairs connected along 84 types of permissible domain walls. These contain 48 domain walls with fixed Miller indices (known as W-walls) and 36 domain walls whose Miller indices may change when free lattice parameters change as well (known as S-walls). Simple and intuitive analytical expressions are provided that describe the orientation of these domain walls, the matrices of transformation between crystallographic basis vectors and, most importantly, the separation between Bragg peaks, diffracted from each of the 84 pairs of domains, connected along a permissible domain wall. It is shown that the orientation of a domain wall may be described by the specific combination of the monoclinic distortion parameters r = [2/(gamma - alpha)][(c/a) - 1], f = (pi - 2 gamma)/(pi - 2 alpha) and p = [2/(pi - alpha - gamma)] [(c/a) - 1]. The results of this work will enhance understanding and facilitate investigation (e.g. using single-crystal X-ray diffraction) of complex monoclinic domain microstructures in both crystals and thin films.
引用
收藏
页码:112 / 128
页数:17
相关论文
共 50 条
[41]   Light-Driven Domain Switching on a Photochromic Ferroelectric [J].
Liu, Yang-Yi ;
Liu, Zhi-Qiang ;
Wang, Yu-Qing ;
Zhou, Ying ;
Qin, Yan ;
Lv, Hui-Peng ;
Li, Peng-Fei ;
Chen, Xiao-Gang ;
Song, Xian-Jiang ;
Ai, Yong .
CRYSTAL GROWTH & DESIGN, 2023, 23 (04) :2602-2608
[42]   Ferroelectric domain engineering by focused infrared femtosecond pulses [J].
Chen, Xin ;
Karpinski, Pawel ;
Shvedov, Vladlen ;
Koynov, Kaloian ;
Wang, Bingxia ;
Trull, Jose ;
Cojocaru, Crina ;
Krolikowski, Wieslaw ;
Sheng, Yan .
APPLIED PHYSICS LETTERS, 2015, 107 (14)
[43]   Domain Wall Architecture in Tetragonal Ferroelectric Thin Films [J].
De Luca, Gabriele ;
Rossell, Marta D. ;
Schaab, Jakob ;
Viart, Nathalie ;
Fiebig, Manfred ;
Trassin, Morgan .
ADVANCED MATERIALS, 2017, 29 (07)
[44]   Organic Ferroelectric Vortex-Antivortex Domain Structure [J].
Tang, Yuan-Yuan ;
Xie, Yongfa ;
Ai, Yong ;
Liao, Wei-Qiang ;
Li, Peng-Fei ;
Nakamura, Takayoshi ;
Xiong, Ren-Gen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (52) :21932-21937
[45]   Electrically driven ferroelastic domain walls, domain wall interactions, and moving needle domains [J].
Lu, Guangming ;
Li, Suzhi ;
Ding, Xiangdong ;
Sun, Jun ;
Salje, Ekhard K. H. .
PHYSICAL REVIEW MATERIALS, 2019, 3 (11)
[46]   Monoclinic MA domains in anisotropically strained ferroelectric K0.75Na0.25NbO3 films on (110) TbScO3 grown by MOCVD [J].
Schwarzkopf, Jutta ;
Braun, Dorothee ;
Hanke, Michael ;
Kwasniewski, Albert ;
Sellmann, Jan ;
Schmidbauer, Martin .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2016, 49 :375-384
[47]   STRUCTURE STUDY OF PARAELECTRIC-FERROELECTRIC PHASE-TRANSITION IN MONOCLINIC K2ZNBR4 [J].
KASANO, H ;
TAKESADA, M ;
MASHIYAMA, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1992, 61 (05) :1580-1584
[48]   A Review of Experimental Methods for Characterizing Ferroelectric Domain Dynamics in Relaxor-PbTiO3 Single Crystals [J].
Sun, Jeong-Woo ;
Xu, Zhengze ;
Lee, Sang-Goo ;
Jo, Wook ;
Jiang, Xiaoning ;
Ryu, Jong Eun .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2025, 72 (01) :2-19
[49]   Hydrodynamics of domain walls in ferroelectrics and multiferroics: Impact on memory devices [J].
Scott, J. F. ;
Evans, D. M. ;
Gregg, J. M. ;
Gruverman, A. .
APPLIED PHYSICS LETTERS, 2016, 109 (04)
[50]   Ferroelastic Domain Walls in BiFeO3 as Memristive Networks [J].
Rieck, Jan L. ;
Cipollini, Davide ;
Salverda, Mart ;
Quinteros, Cynthia P. ;
Schomaker, Lambert R. B. ;
Noheda, Beatriz .
ADVANCED INTELLIGENT SYSTEMS, 2023, 5 (01)