An electrochemically cleanable pH electrode based on an electrodeposited iridium oxide-ruthenium oxide-titanium composite

被引:0
作者
Hu, Guangxing [1 ,2 ]
Diao, Yongxing [1 ,2 ]
Cui, Shuang [1 ,2 ]
Wang, Hongda [1 ,2 ,3 ]
Shi, Yan [1 ]
Li, Zhuang [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Jilin, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
[3] Qingdao Natl Lab Marine Sci & Technol, Qingdao 266200, Peoples R China
基金
中国国家自然科学基金;
关键词
WATER; SURFACE; OXYGEN; EVOLUTION;
D O I
10.1039/d3an01978k
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Biological contamination is an important issue in environmental pH detection, and our prepared electrochemically cleanable electrode may be an effective solution. By electrodepositing an iridium oxide-ruthenium oxide composite on a titanium sheet substrate, the electrode shows a sensitivity of 59.4 mV per pH in the pH range of 2-12 with high reproducibility, low hysteresis, high selectivity and high stability. It is worth mentioning that the electrode was proved to be electrochemically cleanable from biological contamination. When the cleaning time was 30 minutes, the electrode sensitivity rose from 50 to 58 mV per pH. Furthermore, the pH sensor, assembled from the prepared iridium-ruthenium oxide electrode and a home-made Ag/AgCl electrode, has similar electrode properties to those of commercial glass electrodes, but is also mechanically strong and electrochemically cleanable, which is promising for long-term deployment in natural environments. Biological contamination is an important issue in environmental pH detection, and our prepared electrochemically cleanable electrode may be an effective solution.
引用
收藏
页码:1327 / 1336
页数:10
相关论文
共 52 条
[1]  
[Anonymous], ELECTROCHEMICAL ADV, DOI [10.1007/s11356-014-2783-1, DOI 10.1007/S11356-014-2783-1]
[2]   Characterization of the structure of RuO2-IrO2/Ti electrodes by EXAFS [J].
Arikawa, T ;
Takasu, Y ;
Murakami, Y ;
Asakura, K ;
Iwasawa, Y .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (19) :3736-3741
[3]   Review of pH sensing materials from macro- to nano-scale: Recent developments and examples of seawater applications [J].
Avolio, Roberto ;
Grozdanov, Anita ;
Avella, Maurizio ;
Barton, John ;
Cocca, Mariacristina ;
De Falco, Francesca ;
Dimitrov, Aleksandar T. ;
Errico, Maria Emanuela ;
Fanjul-Bolado, Pablo ;
Gentile, Gennaro ;
Paunovic, Perica ;
Ribotti, Alberto ;
Magni, Paolo .
CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2022, 52 (06) :979-1021
[4]   Selectivity of potentiometric ion sensors [J].
Bakker, E ;
Pretsch, E ;
Bühlmann, P .
ANALYTICAL CHEMISTRY, 2000, 72 (06) :1127-1133
[5]  
Bard AJ., 2000, ELECTROCHEMICAL METH
[6]   SURFACE PH AND PCO(2) DISTRIBUTIONS IN THE BELLINGSHAUSEN SEA, SOUTHERN-OCEAN, DURING THE EARLY AUSTRAL SUMMER [J].
BELLERBY, RGJ ;
TURNER, DR ;
ROBERTSON, JE .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 1995, 42 (4-5) :1093-1107
[7]   Analysis of the water temperature regime of the Danube and its tributaries in Croatia [J].
Bonacci, Onien ;
Trninic, Dusan ;
Roje-Bonacci, Tanja .
HYDROLOGICAL PROCESSES, 2008, 22 (07) :1014-1021
[8]   Water temperatures in the headwaters of the Volga River: Trend analyses, possible future changes, and implications for a pan-European perspective [J].
Bui, M. T. ;
Kuzovlev, V. V. ;
Zhenikov, Y. N. ;
Fuereder, L. ;
Seidel, J. ;
Schletterer, M. .
RIVER RESEARCH AND APPLICATIONS, 2018, 34 (06) :495-505
[9]   Modeling carbon dioxide, pH, and un-ionized ammonia relationships in serial reuse systems [J].
Colt, John ;
Watten, Barnaby ;
Rust, Michael .
AQUACULTURAL ENGINEERING, 2009, 40 (01) :28-44
[10]  
Danzer K., 2007, Analytical Chemistry: Theoretical and Metrological Fundamentals