An intelligent optimal charging stations placement on the grid system for the electric vehicle application

被引:8
|
作者
Polisetty, S. P. R. Swamy [1 ,2 ]
Jayanthi, R. [1 ]
Veerraju, M. Sai [2 ]
机构
[1] Annamalai Univ, Dept Elect Engn, Annamalainagar 608002, Tamil Nadu, India
[2] SRKR Engn Coll, Dept EEE, Bhimavaram 534204, Andhra Pradesh, India
关键词
Electric vehicle charging station; Optimal placement; Power loss; Harmonic distortion; Balanced and unbalanced distribution system;
D O I
10.1016/j.energy.2023.129500
中图分类号
O414.1 [热力学];
学科分类号
摘要
In smart cities, electrified vehicle plays a vital role. Due to the number of electric vehicles increasing rate, the optimised deployment of the charging station without maximum loss and voltage imbalance is required. Many existing strategies studied for the optimal charging station deployment result in higher power utilisation, power loss, harmonic distortion and voltage imbalance. Therefore a novel Dove-based Recursive Deep Network (DbRDN) was planned to implement. The DG grid system is initially created by integrating hybrid wind, solar and hydropower sources. Subsequently, the DbRDN is designed for the optimal location for the placement of the EV charging station by analysing load and line data. Moreover, the efficiency of the developed system is evaluated at both the balanced and unbalanced conditions and the outcomes are computed in terms of power loss, harmonic distortion, voltage imbalance, error and accuracy. The results are compared with prevailing techniques to validate the improvement score.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Electric vehicle charging strategy study and the application on charging station placement
    Yanhai Xiong
    Bo An
    Sarit Kraus
    Autonomous Agents and Multi-Agent Systems, 2021, 35
  • [42] Optimal Scheduling of Electric Vehicle Charging at Geographically Dispersed Charging Stations with Multiple Charging Piles
    Sowmya R
    V. Sankaranarayanan
    International Journal of Intelligent Transportation Systems Research, 2022, 20 : 672 - 695
  • [43] Optimal Scheduling of Electric Vehicle Charging at Geographically Dispersed Charging Stations with Multiple Charging Piles
    Sowmya, R.
    Sankaranarayanan, V
    INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH, 2022, 20 (03) : 672 - 695
  • [44] Vehicle-to-grid communication system for electric vehicle charging
    Lim, Yujin
    Kim, Hak-Man
    Kang, Sanggil
    Kim, Tai-Hoon
    INTEGRATED COMPUTER-AIDED ENGINEERING, 2012, 19 (01) : 57 - 65
  • [45] Optimal Dispatch of Electric Vehicle Batteries between Battery Swapping Stations and Charging Stations
    Zhang, Xian
    Wang, Guibin
    2016 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PESGM), 2016,
  • [46] Optimal Planning of Electric Vehicle Charging Stations Considering User Satisfaction and Charging Convenience
    Xu, Di
    Pei, Wenhui
    Zhang, Qi
    ENERGIES, 2022, 15 (14)
  • [47] Optimal Allocation of Electric Vehicle Charging Stations With Adopted Smart Charging/Discharging Schedule
    Hadian, Emad
    Akbari, Hamidreza
    Farzinfar, Mehdi
    Saeed, Seyedamin
    IEEE ACCESS, 2020, 8 (08): : 196908 - 196919
  • [48] Optimal Scheduling for Electric Vehicle Charging With Discrete Charging Levels in Distribution Grid
    Sun, Bo
    Huang, Zhe
    Tan, Xiaoqi
    Tsang, Danny H. K.
    IEEE TRANSACTIONS ON SMART GRID, 2018, 9 (02) : 624 - 634
  • [49] PSO-based optimal placement of electric vehicle charging stations in a distribution network in smart grid environment incorporating backward forward sweep method
    Altaf, Mishal
    Yousif, Muhammad
    Ijaz, Haris
    Rashid, Mahnoor
    Abbas, Nasir
    Khan, Muhammad Adnan
    Waseem, Muhammad
    Saleh, Ahmed Mohammed
    IET RENEWABLE POWER GENERATION, 2024, 18 (15) : 3173 - 3187
  • [50] Multiple domination models for placement of electric vehicle charging stations in road networks
    Gagarin, Andrei
    Corcoran, Padraig
    COMPUTERS & OPERATIONS RESEARCH, 2018, 96 : 69 - 79