Regulation of waste-derived hierarchically porous carbon for optimizing the sulfur cathode host of Li-S batteries

被引:7
|
作者
Li, Jinkui [1 ,2 ]
Li, Hong [1 ,2 ]
Li, Jiao [1 ,2 ]
Yuan, Shixiang [1 ,2 ]
Xiang, Mingwu [1 ,2 ]
Guo, Junming [1 ,2 ]
Bai, Wei [1 ,2 ]
Yang, Zixian [3 ]
机构
[1] Yunnan Minzu Univ, Natl & Local Joint Engn Res Ctr Green Preparat Tec, Kunming 650500, Peoples R China
[2] Yunnan Minzu Univ, Key Lab Green Chem Mat Univ Yunnan Prov, Kunming 650500, Peoples R China
[3] Dehong Teachers Coll, Inst Sci & Technol, Dehong 678400, Peoples R China
关键词
Li - S batteries; Temperature regulation; Hierarchically porous carbon; N-doping; Graphitization; POLYSULFIDE RESERVOIR; SUPERIOR CATHODE; PERFORMANCE; NITROGEN; CONVERSION; GRAPHENE;
D O I
10.1016/j.est.2023.109087
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Porous carbon matrixes have been widely recognized as the simple and effective host materials for encapsulating sulfur and enhancing electronic conductivity in lithium sulfur batteries. Herein, a waste honeycomb is used to prepare in-situ N-doping hierarchically porous carbon materials by systematically regulating the simultaneous activation/carbonation temperature. The high-temperature is conducive to promoting the porous structural formation and high graphitization of carbon materials. As the increased carbonation temperature, the N-heteroatom doping content decreases and the graphitization degree increases gradually. The carbon material prepared at 900 degrees C shows the abundant hierarchically porous structure with high specific surface area of 1932.9 m2 g-1 and large pore volume of 1.292 cm3 g-1, hence can well accommodate the sulfur and capture the soluble polysulfides by the porous adsorption and bonding effect of in-situ doped nitrogen atoms. Besides, the improved graphitization endows the carbon material with a high electronic conductivity, boosting the fast electron transport. Due to these structural merits, the optimized porous carbon/sulfur composite cathode shows a high initial discharge capacity of 969.3 mAh g-1 at 0.2C. Even at high current rate of 1.0C, the relatively high discharge reversible capacity of 492.2 mAh g-1 is still maintained after 500 cycles.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] The hierarchical porous structure of carbon aerogels as matrix in cathode materials for Li-S batteries
    Yan, Yinglin
    Shi, Mangmang
    Wei, Yiqi
    Zhao, Chao
    Chen, Liping
    Fan, Chaojiang
    Yang, Rong
    Xu, Yunhua
    JOURNAL OF NANOPARTICLE RESEARCH, 2018, 20 (10) : 1 - 13
  • [32] A freestanding hierarchically structured cathode enables high sulfur loading and energy density of flexible Li-S batteries
    Liu, Jianpeng
    Li, Zhong
    Jia, Beibei
    Zhu, Juncheng
    Zhu, Wenliang
    Li, Jianping
    Pan, Hao
    Zheng, Bowen
    Chen, Liangyin
    Pezzotti, Giuseppe
    Zhu, Jiliang
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (13) : 6303 - 6310
  • [33] Iron Hexadecafluorophthalocyanine Nanoparticle/Porous Carbon Composites as Cathode Materials for Li-S Batteries
    Xu, Zhanwei
    Niu, Hang
    Zhang, Ying
    Chen, Siyu
    Li, Wenyang
    Li, Jiayin
    Li, Liang
    Shen, Xuetao
    ACS APPLIED NANO MATERIALS, 2024, 7 (18) : 22052 - 22060
  • [34] Bio-Waste Derived Carbon as Interlayer and Scaffold for Li-S Batteries
    Balakumar, Kalimuthu
    Packiyalakshmi, Parameswaran
    Kalaiselvi, Nallathamby
    CHEMISTRYSELECT, 2018, 3 (31): : 8901 - 8911
  • [35] Revisit Carbon/Sulfur Composite for Li-S Batteries
    Zheng, Jianming
    Gu, Meng
    Wagner, Michael J.
    Hays, Kevin A.
    Li, Xiaohong
    Zuo, Pengjian
    Wang, Chongmin
    Zhang, Ji-Guang
    Liu, Jun
    Xiao, Jie
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (10) : A1624 - A1628
  • [36] Biomass-derived activated carbon/sulfur composites as cathode electrodes for Li-S batteries by reducing the oxygen content
    Li, Bing
    Xie, Meng
    Yi, Guanghai
    Zhang, Cunman
    RSC ADVANCES, 2020, 10 (05) : 2823 - 2829
  • [37] Pitch-derived yolk-shell-structured carbon microspheres as efficient sulfur host materials and their application as cathode material for Li-S batteries
    Park, Gi Dae
    Jung, Dae Soo
    Lee, Jung-Kul
    Kang, Yun Chan
    CHEMICAL ENGINEERING JOURNAL, 2019, 373 : 382 - 392
  • [38] Hierarchical porous Fe/N doped carbon nanofibers as host materials for high sulfur loading Li-S batteries
    Jiang, Mao
    Wang, Ruxing
    Wang, Kangli
    Gao, Shu
    Han, Jing
    Yan, Jie
    Cheng, Shijie
    Jiang, Kai
    NANOSCALE, 2019, 11 (32) : 15156 - 15165
  • [39] Nitrogen-sulfur dual-doped citric-acid porous carbon as host for Li-S batteries
    Zhao, Liping
    Zhao, Lihe
    Zhao, Ye
    Zhang, Bangyi
    Liu, Gang
    Zhang, Peng
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (07) : 5343 - 5350
  • [40] Nitrogen/sulfur dual-doped micro-mesoporous hierarchical porous carbon as host for Li-S batteries
    Zhao, Liping
    Zhao, Lihe
    Zhao, Ye
    Liu, Gang
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10