Object-Goal Visual Navigation via Effective Exploration of Relations among Historical Navigation States

被引:19
作者
Du, Heming [1 ,3 ]
Li, Lincheng [2 ]
Huang, Zi [3 ]
Yu, Xin [3 ]
机构
[1] Australian Natl Univ, Canberra, ACT, Australia
[2] Netease Fuxi AI Lab, Beijing, Peoples R China
[3] Univ Queensland, Brisbane, Qld, Australia
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR | 2023年
基金
澳大利亚研究理事会;
关键词
OBSTACLE AVOIDANCE;
D O I
10.1109/CVPR52729.2023.00252
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object-goal visual navigation aims at steering an agent toward an object via a series of moving steps. Previous works mainly focus on learning informative visual representations for navigation, but overlook the impacts of navigation states on the effectiveness and efficiency of navigation. We observe that high relevance among navigation states will cause navigation inefficiency or failure for existing methods. In this paper, we present a History-inspired Navigation Policy Learning (HiNL) framework to estimate navigation states effectively by exploring relationships among historical navigation states. In HiNL, we propose a History-aware State Estimation (HaSE) module to alleviate the impacts of dominant historical states on the current state estimation. Meanwhile, HaSE also encourages an agent to be alert to the current observation changes, thus enabling the agent to make valid actions. Furthermore, we design a History-based State Regularization (HbSR) to explicitly suppress the correlation among navigation states in training. As a result, our agent can update states more effectively while reducing the correlations among navigation states. Experiments on the artificial platform AI2-THOR (i.e., iTHOR and RoboTHOR) demonstrate that HiNL significantly outperforms state-of-the-art methods on both Success Rate and SPL in unseen testing environments.
引用
收藏
页码:2563 / 2573
页数:11
相关论文
共 54 条
[1]   Zero Experience Required: Plug & Play Modular Transfer Learning for Semantic Visual Navigation [J].
Al-Halah, Ziad ;
Ramakrishnan, Santhosh K. ;
Grauman, Kristen .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :17010-17020
[2]  
Alt B, 2019, ADV NEUR IN, V32
[3]   REAL-TIME OBSTACLE AVOIDANCE FOR FAST MOBILE ROBOTS [J].
BORENSTEIN, J ;
KOREN, Y .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1989, 19 (05) :1179-1187
[4]   THE VECTOR FIELD HISTOGRAM - FAST OBSTACLE AVOIDANCE FOR MOBILE ROBOTS [J].
BORENSTEIN, J ;
KOREN, Y .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1991, 7 (03) :278-288
[5]   Online Learning of Reusable Abstract Models for Object Goal Navigation [J].
Campari, Tommaso ;
Lamanna, Leonardo ;
Traverso, Paolo ;
Serafini, Luciano ;
Ballan, Lamberto .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :14850-14859
[6]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[7]   Semantic Audio-Visual Navigation [J].
Chen, Changan ;
Al-Halah, Ziad ;
Grauman, Kristen .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :15511-15520
[8]  
Chen Jinyu, 2022, IEEE C COMP VIS PATT, P15450
[9]  
Chen Kevin, 2019, ARXIV190300445, P2
[10]   RoboTHOR: An Open Simulation-to-Real Embodied AI Platform [J].
Deitke, Matt ;
Han, Winson ;
Herrasti, Alvaro ;
Kembhavi, Aniruddha ;
Kolve, Eric ;
Mottaghi, Roozbeh ;
Salvador, Jordi ;
Schwenk, Dustin ;
VanderBilt, Eli ;
Wallingford, Matthew ;
Weihs, Luca ;
Yatskar, Mark ;
Farhadi, Ali .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :3161-3171