Rigidity for the logarithmic Sobolev inequality on complete metric measure spaces

被引:0
作者
Conrado, Franciele [1 ]
机构
[1] Univ Fed Fluminense, Inst Matemat & Estat, Niteroi, RJ, Brazil
关键词
Rigidity; Bakry-emery Ricci curvature; Logarithmic Sobolev inequality;
D O I
10.1007/s00013-023-01906-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we study the rigidity problem for the logarithmic Sobolev inequality on a complete metric measure space (M-n,g,f)with Bakry-Emery Ricci curvature satisfying Ric(f) >= a/2g for some a>0.We prove that if equality holds, then Mis isometric to Sigma xR for some complete (n-1)-dimensional Riemannian manifold Sigma and by passing an isometry, (M-n,g,f) must split off the Gaussian shrinking soliton(R, dt(2), /vertical bar center dot vertical bar(2)). This was proved in 2019 by Ohta and Takatsu (ManuscrMath 162:271-282, 2019). In this paper, we prove this rigidity result using a different method.
引用
收藏
页码:279 / 286
页数:8
相关论文
共 6 条
  • [1] Bakry D., 1985, Lecture Notes in Math., Springer, V1123, P177, DOI [10.1007/BFb0075847, DOI 10.1007/BFB0075847]
  • [2] Eigenvalues of the drifted Laplacian on complete metric measure spaces
    Cheng, Xu
    Zhou, Detang
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (01)
  • [3] Lichnerowicz A., 1958, Travaux et Recherches Mathematiques
  • [4] Morgan F., 2005, NOT AM MATH SOC, V52, P853
  • [5] Obata M., 1962, J MATH SOC JAPAN, V14, P333, DOI DOI 10.2969/JMSJ/01430333
  • [6] Equality in the logarithmic Sobolev inequality
    Ohta, Shin-ichi
    Takatsu, Asuka
    [J]. MANUSCRIPTA MATHEMATICA, 2020, 162 (1-2) : 271 - 282