On A Proximal-Point Algorithm For Solving the Minimization Problem and Common Fixed-Point Problem in Cat(k) Spaces

被引:0
作者
Garodia, C. [1 ]
Radenovic, S. [2 ]
机构
[1] Jamia Millia Islamia, New Delhi, India
[2] Univ Belgrade, Belgrade, Serbia
关键词
MONOTONE-OPERATORS; RIEMANNIAN-MANIFOLDS; CONVEX-FUNCTIONS; CONVERGENCE;
D O I
10.1007/s11253-023-02193-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new modified proximal-point algorithm in the setting of CAT(1) spaces, which can be used to solve the minimization problem and the common fixed-point problem. In addition, we prove several convergence results for the proposed algorithm under certain mild conditions. Further, we provide some applications for the convex minimization problem and the fixed-point problem in the CAT(k) spaces with a bounded positive real number k. In the process, several relevant results available in the existing literature are generalized and improved.
引用
收藏
页码:190 / 205
页数:16
相关论文
共 34 条
[1]   Newton's method on Riemannian manifolds and a geometric model for the human spine [J].
Adler, RL ;
Dedieu, JP ;
Margulies, JY ;
Martens, M ;
Shub, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (03) :359-390
[2]   PROXIMAL POINT METHODS FOR MONOTONE OPERATORS IN BANACH SPACES [J].
Aoyama, Koji ;
Kohsaka, Fumiaki ;
Takahashi, Wataru .
TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (01) :259-281
[3]   The proximal point algorithm in metric spaces [J].
Bacak, Miroslav .
ISRAEL JOURNAL OF MATHEMATICS, 2013, 194 (02) :689-701
[4]   A proximal point algorithm converging strongly for general errors [J].
Boikanyo, O. A. ;
Morosanu, G. .
OPTIMIZATION LETTERS, 2010, 4 (04) :635-641
[5]   INFINITE PRODUCTS OF RESOLVENTS [J].
BREZIS, H ;
LIONS, PL .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 29 (04) :329-345
[6]   The modified proximal point algorithm in CAT(0) spaces [J].
Cholamjiak, Prasit .
OPTIMIZATION LETTERS, 2015, 9 (07) :1401-1410
[7]  
Cholamjiak P, 2015, FIXED POINT THEORY A, DOI 10.1186/s13663-015-0465-4
[8]   Proximal point algorithm on Riemannian manifolds [J].
Ferreira, OP ;
Oliveira, PR .
OPTIMIZATION, 2002, 51 (02) :257-270
[9]  
GULER O, 1991, SIAM J CONTROL OPTIM, V29, P403, DOI 10.1137/0329022
[10]   Halpern-type proximal point algorithm in complete CAT(0) metric spaces [J].
Heydari, Mohammad Taghi ;
Ranjbar, Sajad .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2016, 24 (03) :141-159