Road Extraction by Multiscale Deformable Transformer From Remote Sensing Images

被引:14
|
作者
Hu, Peng-Cheng [1 ]
Chen, Si-Bao [1 ]
Huang, Li-Li [1 ]
Wang, Gui-Zhou [2 ]
Tang, Jin [1 ]
Luo, Bin [1 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, Zenmorn AHU AI Joint Lab, MOE Key Lab ICSP,IMIS Lab Anhui Prov,Anhui Prov Ke, Hefei 230601, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiscale deformable transformer; remote sensing; road extraction; self-attention mechanism;
D O I
10.1109/LGRS.2023.3299985
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Rapid progress has been made in the research of high-resolution remote sensing road extraction tasks in the past years but due to the diversity of road types and the complexity of road context, extracting the perfect road network is still fraught with difficulties and challenges. Many convolutional neural networks (CNNs) based on encoder-decoder structures have demonstrated their effectiveness. Transformer's self-attention mechanism shows more powerful performance than CNNs in modeling global feature dependencies. In this letter, we propose a multiscale deformable transformer network (MDTNet) based on encoder-decoder structure to extract road networks from remote sensing images. The core of MDTNet is our proposed multiscale deformable self-attention (MDSA) mechanism. MDSA can capture more comprehensive features than conventional self-attention. In addition, roads are not present in certain blocks of areas like other objects, but are interwoven throughout the image in such a long, linear fashion that information about certain road segments may be overlooked. To minimize residual errors in road segmentations, our MDSA incorporates a deformable design on feature maps, which effectively enhances the salience of road features relative to their surroundings. Extensive experiments on several public remote sensing road datasets show that our MDTNet achieves higher segmentation [F1 score and intersection over union (IoU)] and connectivity [average path length similarity (APLS)] accuracy, which verifies the effectiveness of our approach.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Road Extraction Methods in High-Resolution Remote Sensing Images: A Comprehensive Review
    Lian, Renbao
    Wang, Weixing
    Mustafa, Nadir
    Huang, Liqin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) : 5489 - 5507
  • [42] Road Extraction in Remote Sensing Images Based on Spectral and Edge Analysis
    Zhao Wen-zhi
    Luo Li-qun
    Guo Zhou
    Yue Jun
    Yu Xue-ying
    Liu Hui
    Wei Jing
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35 (10) : 2814 - 2819
  • [43] Road extraction in remote sensing data: A survey
    Chen, Ziyi
    Deng, Liai
    Luo, Yuhua
    Li, Dilong
    Marcato Junior, Jose
    Gonsalves, Wesley Nunes
    Nurunnabi, Abdul Awal Md
    Li, Jonathan
    Wang, Cheng
    Li, Deren
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 112
  • [44] Road Extraction from High-Resolution Remote Sensing Images via Local and Global Context Reasoning
    Chen, Jie
    Yang, Libo
    Wang, Hao
    Zhu, Jingru
    Sun, Geng
    Dai, Xiaojun
    Deng, Min
    Shi, Yan
    REMOTE SENSING, 2023, 15 (17)
  • [45] Application Of High-Resolution Remote Sensing Images In Road Extraction
    Liu, Huan
    Yan, Zhen
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY, ENVIRONMENT AND CHEMICAL ENGINEERING (AEECE 2016), 2016, 89 : 346 - 352
  • [46] A Novel Road Extraction Algorithm for High Resolution Remote Sensing Images
    Teng Xinpeng
    Song Shunlin
    Zhan Yongzhao
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (03): : 1435 - 1443
  • [47] RUW-Net: A Dual Codec Network for Road Extraction From Remote Sensing Images
    Yang, Jingyu
    Gu, Zongliang
    Wu, Ting
    Ahmed, Yousef Ameen Esmail
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1550 - 1564
  • [48] Deep Learning Combined with Topology and Channel Features for Road Extraction from Remote Sensing Images
    Gao, Ci
    Gu, Lingjia
    Ren, Ruizhi
    Jiang, Mingda
    EARTH OBSERVING SYSTEMS XXVII, 2022, 12232
  • [49] Road Extraction from Remote Sensing Images Using a Skip-Connected Parallel CNN-Transformer Encoder-Decoder Model
    Gui, Linger
    Gu, Xingjian
    Huang, Fen
    Ren, Shougang
    Qin, Huanhuan
    Fan, Chengcheng
    APPLIED SCIENCES-BASEL, 2025, 15 (03):
  • [50] Road Extraction from High Resolution Remote Sensing Images Based on Vector Field Learning
    Liang, Peng
    Shi, Wenzhong
    Ding, Yixing
    Liu, Zhiqiang
    Shang, Haolv
    SENSORS, 2021, 21 (09)