SOME EXTENSIONS OF THE MODULAR METHOD AND FERMAT EQUATIONS OF SIGNATURE (13, 13, n)

被引:5
作者
Billerey, Nicolas [1 ]
Chen, Imin [2 ]
Dembele, Lassina [3 ]
Dieulefait, Luis [4 ]
Freitas, Nuno [5 ]
机构
[1] Univ Clermont Auvergne, CNRS, LMBP, F-63000 Clermont Ferrand, France
[2] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[3] Univ Luxembourg, Dept Math, Maison Nombre, Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
[4] Univ Barcelona, Dept Algebra & Geometria, Gran Via de les Corts Catalanes 585, Barcelona 08007, Spain
[5] CSIC, Inst Ciencias Matemat, Calle Nicolas Cabrera 13-15, Madrid 28049, Spain
基金
加拿大自然科学与工程研究理事会;
关键词
Fermat equations; abelian surfaces; modularity; Galois representations; MULTI-FREY APPROACH; SERRES CONJECTURE; ELLIPTIC-CURVES; REPRESENTATIONS; SURFACES; SYSTEMS; VALUES; HECKE; FORMS;
D O I
10.5565/PUBLMAT6722309
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide several extensions of the modular method which were moti-vated by the problem of completing previous work to prove that, for any integer n > 2, the equationx13 + y13 = 3znhas no non-trivial primitive solutions. In particular, we present four elimination tech-niques which are based on: (1) establishing reducibility of certain residual Galois representations over a totally real field; (2) generalizing image of inertia arguments to the setting of abelian surfaces; (3) establishing congruences of Hilbert modular forms without the use of often impractical Sturm bounds; and (4) a unit sieve argu-ment which combines information from classical descent and the modular method.The extensions are of broader applicability and provide further evidence that it is possible to obtain a complete resolution of a family of generalized Fermat equations by remaining within the framework of the modular method. As a further illustration of this, we complete a theorem of Anni-Siksek to show that, for P, m > 5, the only primitive solutions to the equation x2` + y2m = z13 are trivial.
引用
收藏
页码:715 / 741
页数:27
相关论文
共 45 条
[1]   Modular elliptic curves over real abelian fields and the generalized Fermat equation x2l + y2m = zp [J].
Anni, Samuele ;
Siksek, Samir .
ALGEBRA & NUMBER THEORY, 2016, 10 (06) :1147-1172
[2]   Ternary diophantine equations via galois representations and modular forms [J].
Bennett, MA ;
Skinner, CM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2004, 56 (01) :23-54
[3]  
Billerey N, 2022, Arxiv, DOI arXiv:1802.04330
[4]   A MULTI-FREY APPROACH TO FERMAT EQUATIONS OF SIGNATURE (r, r, p) [J].
Billerey, Nicolas ;
Chen, Imin ;
Dieulefait, Luis ;
Freitas, Nuno .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (12) :8651-8677
[5]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[6]  
Breuil C, 2014, ANN SCI ECOLE NORM S, V47, P905
[7]   A multi-frey approach to some multi-parameter families of diophantine equations [J].
Bugeaud, Yann ;
Mignotte, Maurice ;
Siksek, Samir .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (03) :491-519
[8]   HECKE AND STURM BOUNDS FOR HILBERT MODULAR FORMS OVER REAL QUADRATIC FIELDS [J].
Burgos Gil, Jose Ignacio ;
Pacetti, Ariel .
MATHEMATICS OF COMPUTATION, 2017, 86 (306) :1949-1978
[9]  
Bushnell ColinJ., 2006, The local Langlands conjecture for GL(2), Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], V335
[10]  
CARAYOL H, 1986, ANN SCI ECOLE NORM S, V19, P409