Homogeneous systems stabilization based on convex embedding

被引:2
作者
Zimenko, Konstantin [1 ]
Polyakov, Andrey [1 ,2 ]
Efimov, Denis [1 ,2 ]
机构
[1] ITMO Univ, Fac Control Syst & Robot, 49 Kronverkskiy Av, St Petersburg 197101, Russia
[2] Univ Lille, Inria, CNRS, UMR 9189,CRIStAL, F-59000 Lille, France
基金
俄罗斯科学基金会;
关键词
homogeneous systems; nonlinear systems; finite-time stabilization; nearly fixed-time stabilization; FINITE-TIME STABILITY; FEEDBACK STABILIZATION; APPROXIMATIONS; NILPOTENT; DESIGN;
D O I
10.1016/j.automatica.2023.111108
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper develops control algorithms for a class of affine nonlinear systems using the so-called canonical homogeneous representation. It is demonstrated that such a representation exists for any homogeneous vector field bounded on the unit sphere. It is shown that canonical homogeneous representation is useful for LMI-based control design and stability analysis of nonlinear systems. Theoretical results are supported by numerical examples. & COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 32 条
  • [1] Homogeneous approximation, recursive observer design, and output feedback
    Andrieu, Vincent
    Praly, Laurent
    Astolfi, Alessandro
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (04) : 1814 - 1850
  • [2] Bacciotti A, 2005, LYAPUNOV FUNCTIONS S
  • [3] Verification of ISS, iISS and IOSS properties applying weighted homogeneity
    Bernuau, Emmanuel
    Polyakov, Andrey
    Efimov, Denis
    Perruquetti, Wilfrid
    [J]. SYSTEMS & CONTROL LETTERS, 2013, 62 (12) : 1159 - 1167
  • [4] Finite-time stability of continuous autonomous systems
    Bhat, SP
    Bernstein, DS
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) : 751 - 766
  • [5] Geometric homogeneity with applications to finite-time stability
    Bhat, SP
    Bernstein, DS
    [J]. MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2005, 17 (02) : 101 - 127
  • [6] Boyd S., 1994, LINEAR MATRIX INEQUA, DOI DOI 10.1137/1.9781611970777
  • [7] Courant R., 2000, INTRO CALCULUS ANAL, VII
  • [8] Filippov A. F., 1988, DIFF EQUAT+, DOI DOI 10.1007/978-94-015-7793-9
  • [9] Grüne L, 2000, SIAM J CONTROL OPTIM, V38, P1288