Mining association rules for classification using frequent generator itemsets in arules package

被引:2
作者
Ledmi, Makhlouf [1 ]
Souidi, Mohammed El Habib [1 ]
Hahsler, Michael [2 ]
Ledmi, Abdeldjalil [1 ]
Kara-Mohamed, Chafia [3 ]
机构
[1] Abbas Laghrour Univ Khenchela, Dept Comp Sci, ICOSI Lab, Khenchela 40000, Algeria
[2] SMU, Bobby B Lyle Sch Engn, Dept Comp Sci, POB 750122, Dallas, TX 75275 USA
[3] Ferhat Abbas Univ Set 1, Dept Comp Sci, LRSD Lab, Setif 19000, Algeria
关键词
frequent generator itemsets; FGIs; classification; association rules; data mining; R language; EFFICIENT; PATTERNS; REPRESENTATION; TREE;
D O I
10.1504/IJDMMM.2023.131399
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Mining frequent itemsets is an attractive research activity in data mining whose main aim is to provide useful relationships among data. Consequently, several open-source development platforms are continuously developed to facilitate the users' exploitation of new data mining tasks. Among these platforms, the R language is one of the most popular tools. In this paper, we propose an extension of arules package by adding the option of mining frequent generator itemsets. We discuss in detail how generators can be used for a classification task through an application example in relation with COVID-19.
引用
收藏
页码:203 / 221
页数:20
相关论文
共 33 条
[21]   A novel approach for mining frequent patterns from incremental data [J].
Jindal, Rajni ;
Borah, Malaya Dutta .
INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2016, 8 (03) :244-264
[22]   GrAFCI+ A fast generator-based algorithm for mining frequent closed itemsets [J].
Ledmi, Makhlouf ;
Zidat, Samir ;
Hamdi-Cherif, Aboubekeur .
KNOWLEDGE AND INFORMATION SYSTEMS, 2021, 63 (07) :1873-1908
[23]   A new concise representation of frequent itemsets using generators and a positive border [J].
Liu, Guimei ;
Li, Jinyan ;
Wong, Limsoon .
KNOWLEDGE AND INFORMATION SYSTEMS, 2008, 17 (01) :35-56
[24]   MANIEA: a microbial association network inference method based on improved Eclat association rule mining algorithm [J].
Liu, Maidi ;
Ye, Yanqing ;
Jiang, Jiang ;
Yang, Kewei .
BIOINFORMATICS, 2021, 37 (20) :3569-3578
[25]  
Nayak J, 2015, International Journal of Database Theory and Application, V8, P169, DOI [10.14257/ijdta.2015.8.1.18, 10.14257/ijdta.2015.8.1.18, DOI 10.1016/J.NEUCOM.2019.10.118, DOI 10.14257/IJDTA.2015.8.1.18]
[26]  
Regin R., 2021, Innovations in Information and Communication Technology Series, P103, DOI DOI 10.46532/978-81-950008-7-6_010
[27]   Data Mining Definitions and Applications for the Management of Production Complexity [J].
Schuh, Guenther ;
Reinhart, Gunther ;
Prote, Jan-Philipp ;
Sauermann, Frederick ;
Horsthofer, Julia ;
Oppolzer, Florian ;
Knoll, Dino .
52ND CIRP CONFERENCE ON MANUFACTURING SYSTEMS (CMS), 2019, 81 :874-879
[28]   Mining frequent patterns without tree generation [J].
Shanthi, K. V. ;
Akilandeswari, J. ;
Jothi, G. .
INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2016, 8 (03) :265-278
[29]   A Systematic Review on Data Mining for Mathematics and Science Education [J].
Shin, Dongjo ;
Shim, Jaekwoun .
INTERNATIONAL JOURNAL OF SCIENCE AND MATHEMATICS EDUCATION, 2021, 19 (04) :639-659
[30]  
Singh K, 2021, Recent Advances in Computer Science and Communications, V14, P6, DOI 10.2174/2213275912666190204134822