Carbonation of blast furnace slag concrete at different CO2 concentrations: Carbonation rate, phase assemblage, microstructure and thermodynamic modelling

被引:69
作者
Liu, Zhiyuan [1 ]
van den Heede, Philip [1 ]
Zhang, Cheng [2 ]
Shi, Xinyu [2 ]
Wang, Ling [2 ]
Li, Juan [2 ]
Yao, Yan [2 ]
Lothenbach, Barbara [3 ]
De Belie, Nele [1 ]
机构
[1] Univ Ghent, Magnel Vandepitte Lab Struct Engn & Bldg Mat, Ghent, Belgium
[2] China Bldg Mat Acad, State Key Lab Green Bldg Mat, Beijing, Peoples R China
[3] Empa Swiss Fed Labs Mat Sci & Technol, Lab Concrete & Asphalt, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
基金
中国国家自然科学基金;
关键词
Concrete carbonation; Blast furnace slag; Thermodynamic modelling; Pore structure; CO; 2; concentration; C-S-H; MERCURY INTRUSION POROSIMETRY; CALCIUM SILICATE HYDRATE; CEMENT-BASED MATERIALS; ACCELERATED CARBONATION; PORE STRUCTURE; PORTLAND-CEMENT; PASTE; MICROANALYSIS; IMPACT;
D O I
10.1016/j.cemconres.2023.107161
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The carbonation behavior of concrete with different blast furnace slag replacement ratios (0 %, 50 % and 70 %) at different CO2 concentrations (natural carbonation at 0.04 % and accelerated carbonation at 1 % and 2 %) was investigated in terms of carbonation rate, carbonation products assemblage and pore structure. The results show that the porosity of concrete decreases with the increase in CO2 concentration regardless of mix proportion. The lower porosity at a higher CO2 concentration can lead to an underestimation of the natural carbonation coefficient from accelerated carbonation tests. The carbonation degree of the C-S-H is one of the key factors that determine the carbonation behavior at different CO2 concentrations. A higher CO2 concentration enhances the consumption of the high-density C-S-H and therefore the carbonation of unreacted clinker. However, the C-S-H formed from GGBFS hydration is carbonated to a more advanced state (considerable silica gel is formed) under natural carbonation.
引用
收藏
页数:21
相关论文
共 103 条
[1]   Pore structure description of mortars containing ground granulated blast-furnace slag by mercury intrusion porosimetry and dynamic vapour sorption [J].
Alderete, Natalia ;
Villagran, Yury ;
Mignon, Arn ;
Snoeck, Didier ;
De Belie, Nele .
CONSTRUCTION AND BUILDING MATERIALS, 2017, 145 :157-165
[2]  
[Anonymous], 2021, British Standard EN 206
[3]  
[Anonymous], 2004, EN 13295:2004
[4]  
[Anonymous], 2006, FIB B, V34, DOI [10.35789/fib.BULL.0034, DOI 10.35789/FIB.BULL.0034]
[5]   The pore solution phase of carbonated cement pastes [J].
Anstice, DJ ;
Page, CL ;
Page, MM .
CEMENT AND CONCRETE RESEARCH, 2005, 35 (02) :377-383
[6]   Comparison between natural and accelerated carbonation (3% CO2): Impact on mineralogy, microstructure, water retention and cracking [J].
Auroy, Martin ;
Poyet, Stephane ;
Le Bescop, Patrick ;
Torrenti, Jean-Michel ;
Charpentier, Thibault ;
Moskura, Melanie ;
Bourbon, Xavier .
CEMENT AND CONCRETE RESEARCH, 2018, 109 :64-80
[7]   Impact of carbonation on unsaturated water transport properties of cement-based materials [J].
Auroy, Martin ;
Poyet, Stephane ;
Le Bescop, Patrick ;
Torrenti, Jean-Michel ;
Charpentier, Thibault ;
Moskura, Melanie ;
Bourbon, Xavier .
CEMENT AND CONCRETE RESEARCH, 2015, 74 :44-58
[8]   Quantification of the degree of reaction of fly ash [J].
Ben Haha, M. ;
De Weerdt, K. ;
Lothenbach, B. .
CEMENT AND CONCRETE RESEARCH, 2010, 40 (11) :1620-1629
[9]   Stability of hydrotalcite (Mg-Al layered double hydroxide) in presence of different anions [J].
Bernard, Ellina ;
Zucha, Wolfgang Jan ;
Lothenbach, Barbara ;
Mader, Urs .
CEMENT AND CONCRETE RESEARCH, 2022, 152
[10]   Evolution of pore structure in blended systems [J].
Berodier, E. ;
Scrivener, K. .
CEMENT AND CONCRETE RESEARCH, 2015, 73 :25-35