CeDAR: incorporating cell type hierarchy improves cell type-specific differential analyses in bulk omics data

被引:5
作者
Chen, Luxiao [1 ]
Li, Ziyi [2 ]
Wu, Hao [3 ]
机构
[1] Emory Univ, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA
[2] Univ MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
[3] Chinese Acad Sci, Shenzhen Inst Adv Technol, Fac Comp Sci & Control Engn, 1068 Xueyuan Ave, Shenzhen 518055, Peoples R China
基金
美国国家卫生研究院;
关键词
Cell type-specific differential analysis; Cell type hierarchy; Hierarchical Bayesian model; Microarray data analysis; EPIGENOME-WIDE ASSOCIATION; GENE-EXPRESSION; RHEUMATOID-ARTHRITIS; BIOCONDUCTOR PACKAGE; DNA METHYLATION; B-CELLS; DECONVOLUTION; MODEL;
D O I
10.1186/s13059-023-02857-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Bulk high-throughput omics data contain signals from a mixture of cell types. Recent developments of deconvolution methods facilitate cell type-specific inferences from bulk data. Our real data exploration suggests that differential expression or methylation status is often correlated among cell types. Based on this observation, we develop a novel statistical method named CeDAR to incorporate the cell type hierarchy in cell type-specific differential analyses of bulk data. Extensive simulation and real data analyses demonstrate that this approach significantly improves the accuracy and power in detecting cell type-specific differential signals compared with existing methods, especially in low-abundance cell types.
引用
收藏
页数:26
相关论文
共 83 条
[1]   Deconvolution of Blood Microarray Data Identifies Cellular Activation Patterns in Systemic Lupus Erythematosus [J].
Abbas, Alexander R. ;
Wolslegel, Kristen ;
Seshasayee, Dhaya ;
Modrusan, Zora ;
Clark, Hilary F. .
PLOS ONE, 2009, 4 (07)
[2]   Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data [J].
Abbas, AR ;
Baldwin, D ;
Ma, Y ;
Ouyang, W ;
Gurney, A ;
Martin, F ;
Fong, S ;
Campagne, MV ;
Godowski, P ;
Williams, PM ;
Chan, AC ;
Clark, HF .
GENES AND IMMUNITY, 2005, 6 (04) :319-331
[3]  
Abbas AR, 2010, GENE EXPRESSION OMNI
[4]   Genome-Wide DNA Methylation Analysis of Systemic Lupus Erythematosus Reveals Persistent Hypomethylation of Interferon Genes and Compositional Changes to CD4+T-cell Populations [J].
Absher, Devin M. ;
Li, Xinrui ;
Waite, Lindsay L. ;
Gibson, Andrew ;
Roberts, Kevin ;
Edberg, Jeffrey ;
Chatham, W. Winn ;
Kimberly, Robert P. .
PLOS GENETICS, 2013, 9 (08)
[5]  
Absher DM, 2014, PLOS GENET
[6]   "Gap hunting" to characterize clustered probe signals in Illumina methylation array data [J].
Andrews, Shan V. ;
Ladd-Acosta, Christine ;
Feinberg, Andrew P. ;
Hansen, Kasper D. ;
Fallin, M. Daniele .
EPIGENETICS & CHROMATIN, 2016, 9 :1-21
[7]   Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays [J].
Aryee, Martin J. ;
Jaffe, Andrew E. ;
Corrada-Bravo, Hector ;
Ladd-Acosta, Christine ;
Feinberg, Andrew P. ;
Hansen, Kasper D. ;
Irizarry, Rafael A. .
BIOINFORMATICS, 2014, 30 (10) :1363-1369
[8]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[9]   Effector Functions of CD4+T Cells at the Site of Local Autoimmune Inflammation-Lessons From Rheumatoid Arthritis [J].
Chemin, Karine ;
Gerstner, Christina ;
Malmstrom, Vivianne .
FRONTIERS IN IMMUNOLOGY, 2019, 10
[10]  
Chen L, 2022, BIOCONDUCTOR