Classification algorithm for motor imagery EEG signals based on parallel DAMSCN-LSTM

被引:0
作者
Luo, Yuan [1 ]
Zhou, Jingfan [1 ]
Chen, Libujie [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Chongqing Municipal Level Key Lab Photoelect Info, Chongqing 400065, Peoples R China
来源
OPTICAL DESIGN AND TESTING XII | 2023年 / 12315卷
关键词
motor imagery; multi-scale convolutional neural networks; long and short-term memory; dual attention;
D O I
10.1117/12.2641954
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
EEG signals classification plays a crucial role in motor imagery brain computer interface systems. Traditional convolutional neural networks tend to ignore temporal information when classifying motor imagery EEG signals, it use a single-scale convolutional kernel, resulting in poor classification performance. In this paper, we propose a parallel fusion algorithm based on dual attentional multi-scale convolutional neural networks (DAMSCN) and long and short-term memory (LSTM). Firstly, DAMSCN uses convolutional kernels of different sizes at the same layer to extract time-frequency features of EEG signals at different scales, and introduces a dual attention mechanism. At the same time, LSTM extracts temporal features from the EEG signals. Then, the fusion and classification of all features is achieved with the help of fully connected layers and softmax layers. Finally, experiments are conducted on domain-specific public dataset to verify the performance of the algorithm.
引用
收藏
页数:10
相关论文
共 18 条
[1]   Deep learning for motor imagery EEG-based classification: A review [J].
Al-Saegh, Ali ;
Dawwd, Shefa A. ;
Abdul-Jabbar, Jassim M. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 63
[2]   HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification [J].
Dai, Guanghai ;
Zhou, Jun ;
Huang, Jiahui ;
Wang, Ning .
JOURNAL OF NEURAL ENGINEERING, 2020, 17 (01)
[3]   Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface [J].
LaFleur, Karl ;
Cassady, Kaitlin ;
Doud, Alexander ;
Shades, Kaleb ;
Rogin, Eitan ;
He, Bin .
JOURNAL OF NEURAL ENGINEERING, 2013, 10 (04)
[4]   Motor imagery EEG classification algorithm based on CNN-LSTM feature fusion network [J].
Li, Hongli ;
Ding, Man ;
Zhang, Ronghua ;
Xiu, Chunbo .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 72
[5]   Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors [J].
Liao, Lun-De ;
Chen, Chi-Yu ;
Wang, I-Jan ;
Chen, Sheng-Fu ;
Li, Shih-Yu ;
Chen, Bo-Wei ;
Chang, Jyh-Yeong ;
Lin, Chin-Teng .
JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2012, 9
[6]   A systematic review on hybrid EEG/fNIRS in brain-computer interface [J].
Liu, Ziming ;
Shore, Jeremy ;
Wang, Miao ;
Yuan, Fengpei ;
Buss, Aaron ;
Zhao, Xiaopeng .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68 (68)
[7]   The Expanded Use of Autoaugmentation Techniques in Oncoplastic Breast Surgery [J].
Losken, Albert ;
Hart, Alexandra M. ;
Dutton, James Walter ;
Broecker, Justine S. ;
Styblo, Toncred M. ;
Carlson, Grant W. .
PLASTIC AND RECONSTRUCTIVE SURGERY, 2018, 141 (01) :10-19
[8]   A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines [J].
Lu, Na ;
Li, Tengfei ;
Ren, Xiaodong ;
Miao, Hongyu .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2017, 25 (06) :566-576
[9]   A closed-loop brain-machine interface framework design for motor rehabilitation [J].
Pan, Hongguang ;
Mi, Wenyu ;
Lei, Xinyu ;
Deng, Jun .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 58
[10]   Motor imagery classification in brain-machine interface with machine learning algorithms: Classical approach to multi-layer perceptron model [J].
Sharma, Rahul ;
Kim, Minju ;
Gupta, Akansha .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71