KETCHUP: Parameterizing of large-scale kinetic models using multiple datasets with different reference states

被引:4
作者
Hu, Mengqi [1 ,2 ]
Suthers, Patrick F. [1 ,2 ]
Maranas, Costas D. [1 ,2 ]
机构
[1] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
[2] US DOE, Ctr Adv Bioenergy & Bioprod Innovat, Urbana, IL USA
关键词
ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; IDENTIFICATION; GLYCOLYSIS; METABOLISM; YEAST; OVEREXPRESSION; OPTIMIZATION; PREDICTION; ALGORITHM;
D O I
10.1016/j.ymben.2024.02.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Large-scale kinetic models provide the computational means to dynamically link metabolic reaction fluxes to metabolite concentrations and enzyme levels while also conforming to substrate level regulation. However, the development of broadly applicable frameworks for efficiently and robustly parameterizing models remains a challenge. Challenges arise due to both the heterogeneity, paucity, and difficulty in obtaining flux and/or concentration data but also due to the computational difficulties of the underlying parameter identification problem. Both the computational demands for parameterization, degeneracy of obtained parameter solutions and interpretability of results has so far limited widespread adoption of large-scale kinetic models despite their potential. Herein, we introduce the Kinetic Estimation Tool Capturing Heterogeneous Datasets Using Pyomo (KETCHUP), a flexible parameter estimation tool that leverages a primal -dual interior -point algorithm to solve a nonlinear programming (NLP) problem that identifies a set of parameters capable of recapitulating the (non)steady-state fluxes and concentrations in wild -type and perturbed metabolic networks. KETCHUP is benchmarked against previously parameterized large-scale kinetic models demonstrating an at least an order of magnitude faster convergence than the tool K -FIT while at the same time attaining better data fits. This versatile toolbox accepts different kinetic descriptions, metabolic fluxes, enzyme levels and metabolite concentrations, under either steady-state or instationary conditions to enable robust kinetic model construction and parameterization. KETCHUP supports the SBML format and can be accessed at https://github.com/maranasgroup/KETCHUP.
引用
收藏
页码:123 / 133
页数:11
相关论文
共 89 条
[51]   Program DYNAFIT for the analysis of enzyme kinetic data: Application to HIV proteinase [J].
Kuzmic, P .
ANALYTICAL BIOCHEMISTRY, 1996, 237 (02) :260-273
[52]   Minimum information requested in the annotation of biochemical models (MIRIAM) [J].
Le Novère, N ;
Finney, A ;
Hucka, M ;
Bhalla, US ;
Campagne, F ;
Collado-Vides, J ;
Crampin, EJ ;
Halstead, M ;
Klipp, E ;
Mendes, P ;
Nielsen, P ;
Sauro, H ;
Shapiro, B ;
Snoep, JL ;
Spence, HD ;
Wanner, BL .
NATURE BIOTECHNOLOGY, 2005, 23 (12) :1509-1515
[53]   Bringing metabolic networks to life: convenience rate law and thermodynamic constraints [J].
Liebermeister, Wolfram ;
Klipp, Edda .
THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2006, 3
[54]   MEMOTE for standardized genome-scale metabolic model testing [J].
Lieven, Christian ;
Beber, Moritz E. ;
Olivier, Brett G. ;
Bergmann, Frank T. ;
Ataman, Meric ;
Babaei, Parizad ;
Bartell, Jennifer A. ;
Blank, Lars M. ;
Chauhan, Siddharth ;
Correia, Kevin ;
Diener, Christian ;
Draeger, Andreas ;
Ebert, Birgitta E. ;
Edirisinghe, Janaka N. ;
Faria, Jose P. ;
Feist, Adam M. ;
Fengos, Georgios ;
Fleming, Ronan M. T. ;
Garcia-Jimenez, Beatriz ;
Hatzimanikatis, Vassily ;
van Helvoirt, Wout ;
Henry, Christopher S. ;
Hermjakob, Henning ;
Herrgard, Markus J. ;
Kaafarani, Ali ;
Kim, Hyun Uk ;
King, Zachary ;
Klamt, Steffen ;
Klipp, Edda ;
Koehorst, Jasper J. ;
Koenig, Matthias ;
Lakshmanan, Meiyappan ;
Lee, Dong-Yup ;
Lee, Sang Yup ;
Lee, Sunjae ;
Lewis, Nathan E. ;
Liu, Filipe ;
Ma, Hongwu ;
Machado, Daniel ;
Mahadevan, Radhakrishnan ;
Maia, Paulo ;
Mardinoglu, Adil ;
Medlock, Gregory L. ;
Monk, Jonathan M. ;
Nielsen, Jens ;
Nielsen, Lars Keld ;
Nogales, Juan ;
Nookaew, Intawat ;
Palsson, Bernhard O. ;
Papin, Jason A. .
NATURE BIOTECHNOLOGY, 2020, 38 (03) :272-276
[55]   Systematic identification of allosteric protein-metabolite interactions that control enzyme activity in vivo [J].
Link, Hannes ;
Kochanowski, Karl ;
Sauer, Uwe .
NATURE BIOTECHNOLOGY, 2013, 31 (04) :357-+
[56]   Metabolic flux responses to deletion of 20 core enzymes reveal flexibility and limits of E. coli metabolism [J].
Long, Christopher P. ;
Antoniewicz, Maciek R. .
METABOLIC ENGINEERING, 2019, 55 :249-257
[57]   The Identification of Enzyme Targets for the Optimization of a Valine Producing Corynebacterium glutamicum Strain Using a Kinetic Model [J].
Magnus, Jorgen Barsett ;
Oldiges, Marco ;
Takors, Ralf .
BIOTECHNOLOGY PROGRESS, 2009, 25 (03) :754-762
[58]   A dynamic kinetic model captures cell-free metabolism for improved butanol production [J].
Martin, Jacob P. ;
Rasor, Blake J. ;
DeBonis, Jonathon ;
Karim, Ashty S. ;
Jewett, Michael C. ;
Tyo, Keith E. J. ;
Broadbelt, Linda J. .
METABOLIC ENGINEERING, 2023, 76 :133-145
[59]   Design and application of a kinetic model of lipid metabolism in Saccharomyces cerevisiae [J].
Mishra, Shekhar ;
Wang, Ziyu ;
Volk, Michael J. ;
Zhao, Huimin .
METABOLIC ENGINEERING, 2023, 75 :12-18
[60]   A design-build-test cycle using modeling and experiments reveals interdependencies between upper glycolysis and xylose uptake in recombinant S. cerevisiae and improves predictive capabilities of large-scale kinetic models [J].
Miskovic, Ljubisa ;
Alff-Tuomala, Susanne ;
Soh, Keng Cher ;
Barth, Dorothee ;
Salusjarvi, Laura ;
Pitkanen, Juha-Pekka ;
Ruohonen, Laura ;
Penttila, Merja ;
Hatzimanikatis, Vassily .
BIOTECHNOLOGY FOR BIOFUELS, 2017, 10