KETCHUP: Parameterizing of large-scale kinetic models using multiple datasets with different reference states

被引:4
作者
Hu, Mengqi [1 ,2 ]
Suthers, Patrick F. [1 ,2 ]
Maranas, Costas D. [1 ,2 ]
机构
[1] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
[2] US DOE, Ctr Adv Bioenergy & Bioprod Innovat, Urbana, IL USA
关键词
ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; IDENTIFICATION; GLYCOLYSIS; METABOLISM; YEAST; OVEREXPRESSION; OPTIMIZATION; PREDICTION; ALGORITHM;
D O I
10.1016/j.ymben.2024.02.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Large-scale kinetic models provide the computational means to dynamically link metabolic reaction fluxes to metabolite concentrations and enzyme levels while also conforming to substrate level regulation. However, the development of broadly applicable frameworks for efficiently and robustly parameterizing models remains a challenge. Challenges arise due to both the heterogeneity, paucity, and difficulty in obtaining flux and/or concentration data but also due to the computational difficulties of the underlying parameter identification problem. Both the computational demands for parameterization, degeneracy of obtained parameter solutions and interpretability of results has so far limited widespread adoption of large-scale kinetic models despite their potential. Herein, we introduce the Kinetic Estimation Tool Capturing Heterogeneous Datasets Using Pyomo (KETCHUP), a flexible parameter estimation tool that leverages a primal -dual interior -point algorithm to solve a nonlinear programming (NLP) problem that identifies a set of parameters capable of recapitulating the (non)steady-state fluxes and concentrations in wild -type and perturbed metabolic networks. KETCHUP is benchmarked against previously parameterized large-scale kinetic models demonstrating an at least an order of magnitude faster convergence than the tool K -FIT while at the same time attaining better data fits. This versatile toolbox accepts different kinetic descriptions, metabolic fluxes, enzyme levels and metabolite concentrations, under either steady-state or instationary conditions to enable robust kinetic model construction and parameterization. KETCHUP supports the SBML format and can be accessed at https://github.com/maranasgroup/KETCHUP.
引用
收藏
页码:123 / 133
页数:11
相关论文
共 89 条
[21]   Building kinetic models for metabolic engineering [J].
Foster, Charles J. ;
Wang, Lin ;
Dinh, Hoang, V ;
Suthers, Patrick F. ;
Maranas, Costas D. .
CURRENT OPINION IN BIOTECHNOLOGY, 2021, 67 :35-41
[22]   From Escherichia coli mutant 13C labeling data to a core kinetic model: A kinetic model parameterization pipeline [J].
Foster, Charles J. ;
Gopalakrishnan, Saratram ;
Antoniewicz, Maciek R. ;
Maranas, Costas D. .
PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (09)
[23]  
gcc.gnu, GNU Fortran Compiler Manuals
[24]   Quantitative prediction of genome-wide resource allocation in bacteria [J].
Goelzer, Anne ;
Muntel, Jan ;
Chubukov, Victor ;
Jules, Matthieu ;
Prestel, Eric ;
Noelker, Rolf ;
Mariadassou, Mahendra ;
Aymerich, Stephane ;
Hecker, Michael ;
Noirot, Philippe ;
Becher, Doerte ;
Fromion, Vincent .
METABOLIC ENGINEERING, 2015, 32 :232-243
[25]   K-FIT: An accelerated kinetic parameterization algorithm using steady-state fluxomic data [J].
Gopalakrishnan, Saratram ;
Dash, Satyakam ;
Maranas, Costas .
METABOLIC ENGINEERING, 2020, 61 :197-205
[26]   Kinetic ensemble model of gas fermenting Clostridium autoethanogenum for improved ethanol production [J].
Greene, Jennifer ;
Daniell, James ;
Kopke, Michael ;
Broadbelt, Linda ;
Tyo, Keith E. J. .
BIOCHEMICAL ENGINEERING JOURNAL, 2019, 148 :46-56
[27]   Acceleration Strategies to Enhance Metabolic Ensemble Modeling Performance [J].
Greene, Jennifer L. ;
Waechter, Andreas ;
Tyo, Keith E. J. ;
Broadbelt, Linda J. .
BIOPHYSICAL JOURNAL, 2017, 113 (05) :1150-1162
[28]   Current status and applications of genome-scale metabolic models [J].
Gu, Changdai ;
Kim, Gi Bae ;
Kim, Won Jun ;
Kim, Hyun Uk ;
Lee, Sang Yup .
GENOME BIOLOGY, 2019, 20 (1)
[29]   Universally sloppy parameter sensitivities in systems biology models [J].
Gutenkunst, Ryan N. ;
Waterfall, Joshua J. ;
Casey, Fergal P. ;
Brown, Kevin S. ;
Myers, Christopher R. ;
Sethna, James P. .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (10) :1871-1878
[30]   Systems-level analysis of mechanisms regulating yeast metabolic flux [J].
Hackett, Sean R. ;
Zanotelli, Vito R. T. ;
Xu, Wenxin ;
Goya, Jonathan ;
Park, Junyoung O. ;
Perlman, David H. ;
Gibney, Patrick A. ;
Botstein, David ;
Storey, John D. ;
Rabinowitz, Joshua D. .
SCIENCE, 2016, 354 (6311)