KETCHUP: Parameterizing of large-scale kinetic models using multiple datasets with different reference states

被引:4
作者
Hu, Mengqi [1 ,2 ]
Suthers, Patrick F. [1 ,2 ]
Maranas, Costas D. [1 ,2 ]
机构
[1] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
[2] US DOE, Ctr Adv Bioenergy & Bioprod Innovat, Urbana, IL USA
关键词
ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; IDENTIFICATION; GLYCOLYSIS; METABOLISM; YEAST; OVEREXPRESSION; OPTIMIZATION; PREDICTION; ALGORITHM;
D O I
10.1016/j.ymben.2024.02.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Large-scale kinetic models provide the computational means to dynamically link metabolic reaction fluxes to metabolite concentrations and enzyme levels while also conforming to substrate level regulation. However, the development of broadly applicable frameworks for efficiently and robustly parameterizing models remains a challenge. Challenges arise due to both the heterogeneity, paucity, and difficulty in obtaining flux and/or concentration data but also due to the computational difficulties of the underlying parameter identification problem. Both the computational demands for parameterization, degeneracy of obtained parameter solutions and interpretability of results has so far limited widespread adoption of large-scale kinetic models despite their potential. Herein, we introduce the Kinetic Estimation Tool Capturing Heterogeneous Datasets Using Pyomo (KETCHUP), a flexible parameter estimation tool that leverages a primal -dual interior -point algorithm to solve a nonlinear programming (NLP) problem that identifies a set of parameters capable of recapitulating the (non)steady-state fluxes and concentrations in wild -type and perturbed metabolic networks. KETCHUP is benchmarked against previously parameterized large-scale kinetic models demonstrating an at least an order of magnitude faster convergence than the tool K -FIT while at the same time attaining better data fits. This versatile toolbox accepts different kinetic descriptions, metabolic fluxes, enzyme levels and metabolite concentrations, under either steady-state or instationary conditions to enable robust kinetic model construction and parameterization. KETCHUP supports the SBML format and can be accessed at https://github.com/maranasgroup/KETCHUP.
引用
收藏
页码:123 / 133
页数:11
相关论文
共 89 条
[1]   A fully asynchronous multifrontal solver using distributed dynamic scheduling [J].
Amestoy, PR ;
Duff, IS ;
L'Excellent, JY ;
Koster, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 23 (01) :15-41
[2]   Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models [J].
Andreozzi, Stefano ;
Chakrabarti, Anirikh ;
Soh, Keng Cher ;
Burgard, Anthony ;
Yang, Tae Hoon ;
Van Dien, Stephen ;
Miskovic, Ljubisa ;
Hatzimanikatis, Vassily .
METABOLIC ENGINEERING, 2016, 35 :148-159
[3]   iSCHRUNK - In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks [J].
Andreozzi, Stefano ;
Miskovic, Ljubisa ;
Hatzimanikatis, Vassily .
METABOLIC ENGINEERING, 2016, 33 :158-168
[4]  
[Anonymous], COLLECTION FORTRAN C
[5]   A guide to metabolic flux analysis in metabolic engineering: Methods, tools and applications [J].
Antoniewicz, Maciek R. .
METABOLIC ENGINEERING, 2021, 63 :2-12
[6]  
Beilina L., 2017, Numerical Linear Algebra: Theory and Applications
[7]   Object library of algorithms for dynamic optimization problems: Benchmarking SQP and nonlinear interior point methods [J].
Blaszczyk, Jacek ;
Karbowski, Andrzej ;
Malinowski, Krzysztof .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2007, 17 (04) :515-537
[8]   RBAtools: a programming interface for Resource Balance Analysis models [J].
Bodeit, Oliver ;
Ben Samir, Ines ;
Karr, Jonathan R. ;
Goelzer, Anne ;
Liebermeister, Wolfram .
BIOINFORMATICS ADVANCES, 2023, 3 (01)
[9]   LibSBML: an API library for SBML [J].
Bornstein, Benjamin J. ;
Keating, Sarah M. ;
Jouraku, Akiya ;
Hucka, Michael .
BIOINFORMATICS, 2008, 24 (06) :880-881
[10]   Automated generation of bacterial resource allocation models [J].
Bulovic, Ana ;
Fischer, Stephan ;
Marc Dinh ;
Golib, Felipe ;
Liebermeister, Wolfram ;
Poirier, Christian ;
Tournier, Laurent ;
Klipp, Edda ;
Fromion, Vincent ;
Goelzer, Anne .
METABOLIC ENGINEERING, 2019, 55 :12-22