Body composition analysis using convolutional neural network in predicting postoperative pancreatic fistula and survival after pancreatoduodenectomy for pancreatic cancer

被引:7
作者
Yoo, Jeongin [1 ]
Yoon, Soon Ho [1 ,2 ]
Lee, Dong Ho [1 ,2 ]
Jang, Jin-Young [3 ]
机构
[1] Seoul Natl Univ Hosp, Dept Radiol, 101 Daehak Ro, Seoul 03080, South Korea
[2] Seoul Natl Univ, Coll Med, Dept Radiol, 103 Daehak Ro, Seoul 03080, South Korea
[3] Seoul Natl Univ Hosp, Dept Surg, 101 Daehak Ro, Seoul 03080, South Korea
关键词
Pancreatic neoplasm; Pancreaticoduodenectomy; Pancreatic fistula; Survival analysis; Body composition; SKELETAL-MUSCLE; VISCERAL ADIPOSITY; SARCOPENIA; OBESITY; RESECTION; IMPACT; CT; COMPLICATIONS; ATTENUATION; CACHEXIA;
D O I
10.1016/j.ejrad.2023.111182
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To evaluate whether body composition measurements acquired using convolutional neural networks (CNNs) from preoperative CT images could predict postoperative pancreatic fistula (POPF) and overall survival (OS) after pancreaticoduodenectomy in patients with pancreatic ductal adenocarcinoma (PDAC). Methods: 257 patients (160 men; median age [interquartile range], 67 [60-74]) who underwent pancreaticoduodenectomy for PDAC between January 2013 and December 2017 were included in this retrospective study. Body composition measurements were based on a CNN trained to segment CT images into skeletal muscle area, visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT). Skeletal muscle area, VAT, and SAT were normalized to height square and labeled as skeletal muscle, VAT, and SAT indices, respectively. The independent risk factors for clinically relevant POPF (grade B or C) were determined using a multivariate logistic regression model, and prognostic factors for OS were assessed using Cox proportional hazards regression analyses. Results: After pancreatioduodenectomy, 27 patients developed POPF grade B or C (10.5 %, 27/257). The VAT index (odds ratio [OR] = 7.43, p < 0.001) was the only independent prognostic factor for POPF grade B or C. During the median follow-up period of 23 months, 205 (79.8 % [205/257]) patients died. For prediction of OS, skeletal muscle index (hazard ratio [HR] = 0.58, p = 0.018) was a significant factor, along with vascular invasion (HR = 1.85, p < 0.001) and neoadjuvant therapy (HR = 0.58, p = 0.011). Conclusions: A high VAT index and a low skeletal muscle index can be utilized in predicting the occurrence of POPF grade B or C and poor OS, respectively.
引用
收藏
页数:8
相关论文
共 28 条
[1]   Cachexia and sarcopenia: mechanisms and potential targets for intervention [J].
Argiles, Josep M. ;
Busquets, Silvia ;
Stemmler, Britta ;
Lopez-Soriano, Francisco J. .
CURRENT OPINION IN PHARMACOLOGY, 2015, 22 :100-106
[2]   The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 Years After [J].
Bassi, Claudio ;
Marchegiani, Giovanni ;
Dervenis, Christos ;
Sarr, Micheal ;
Abu Hilal, Mohammad ;
Adham, Mustapha ;
Allen, Peter ;
Andersson, Roland ;
Asbun, Horacio J. ;
Besselink, Marc G. ;
Conlon, Kevin ;
Del Chiaro, Marco ;
Falconi, Massimo ;
Fernandez-Cruz, Laureano ;
Fernandez-Del Castillo, Carlos ;
Fingerhut, Abe ;
Friess, Helmut ;
Gouma, Dirk J. ;
Hackert, Thilo ;
Izbicki, Jakob ;
Lillemoe, Keith D. ;
Neoptolemos, John P. ;
Olah, Attila ;
Schulick, Richard ;
Shrikhande, Shailesh V. ;
Takada, Tadahiro ;
Takaori, Kyoichi ;
Traverso, William ;
Vollmer, Charles ;
Wolfgang, Christopher L. ;
Yeo, Charles J. ;
Salvia, Roberto ;
Buehler, Marcus .
SURGERY, 2017, 161 (03) :584-591
[3]   A Prospectively Validated Clinical Risk Score Accurately Predicts Pancreatic Fistula after Pancreatoduodenectomy [J].
Callery, Mark P. ;
Pratt, Wande B. ;
Kent, Tara S. ;
Chaikof, Elliot L. ;
Vollmer, Charles M., Jr. .
JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2013, 216 (01) :1-14
[4]   Preoperative sarcopenia and post-operative accelerated muscle loss negatively impact survival after resection of pancreatic cancer [J].
Choi, Moon Hyung ;
Yoon, Seung Bae ;
Lee, Kyungjin ;
Song, Meiying ;
Lee, In Seok ;
Lee, Myung Ah ;
Hong, Tae Ho ;
Choi, Myung-Gyu .
JOURNAL OF CACHEXIA SARCOPENIA AND MUSCLE, 2018, 9 (02) :326-334
[5]   An application of changepoint methods in studying the effect of age on survival in breast cancer [J].
Contal, C ;
O'Quigley, J .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1999, 30 (03) :253-270
[6]   Body composition and sarcopenia: The next-generation of personalized oncology and pharmacology? [J].
Hilmi, Marc ;
Jouinot, Anne ;
Burns, Robert ;
Pigneur, Frederic ;
Mounier, Rerni ;
Gondin, Julien ;
Neuzillet, Cindy ;
Goldwasser, Francois .
PHARMACOLOGY & THERAPEUTICS, 2019, 196 :135-159
[7]   Predictive value of sarcopenia and visceral obesity for postoperative pancreatic fistula after pancreaticoduodenectomy analyzed on clinically acquired CT and MRI [J].
Jang, Minji ;
Park, Hyung Woo ;
Huh, Jimi ;
Lee, Jong Hwa ;
Jeong, Yoong Ki ;
Nah, Yang Won ;
Park, Jisuk ;
Kim, Kyung Won .
EUROPEAN RADIOLOGY, 2019, 29 (05) :2417-2425
[8]   The potential of machine learning to predict postoperative pancreatic fistula based on preoperative, non-contrast-enhanced CT: A proof-of-principle study [J].
Kambakamba, Patryk ;
Mannil, Manoj ;
Herrera, Paola E. ;
Mueller, Philip C. ;
Kuemmerli, Christoph ;
Linecker, Michael ;
von Spiczak, Jochen ;
Huellner, Martin W. ;
Raptis, Dimitri A. ;
Petrowsky, Henrik ;
Clavien, Pierre-Alain ;
Alkadhi, Hatem .
SURGERY, 2020, 167 (02) :448-454
[9]   Recent Issues on Body Composition Imaging for Sarcopenia Evaluation [J].
Lee, Koeun ;
Shin, Yongbin ;
Huh, Jimi ;
Sung, Yu Sub ;
Lee, In-Seob ;
Yoon, Kwon-Ha ;
Kim, Kyung Won .
KOREAN JOURNAL OF RADIOLOGY, 2019, 20 (02) :205-217
[10]   Deep neural network for automatic volumetric segmentation of whole-body CT images for body composition assessment [J].
Lee, Yoon Seong ;
Hong, Namki ;
Witanto, Joseph Nathanael ;
Choi, Ye Ra ;
Park, Junghoan ;
Decazes, Pierre ;
Eude, Florian ;
Kim, Chang Oh ;
Kim, Hyeon Chang ;
Goo, Jin Mo ;
Rhee, Yumie ;
Yoon, Soon Ho .
CLINICAL NUTRITION, 2021, 40 (08) :5038-5046