Integral Laplacian graphs with a unique repeated Laplacian eigenvalue, I

被引:0
|
作者
Hameed, Abdul [1 ]
Tyaglov, Mikhail [2 ,3 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, MOE LSC, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, CMA Shanghai, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[4] St Petersburg State Univ, Dept Math & Comp Sci, St Petersburg 199178, Russia
来源
SPECIAL MATRICES | 2023年 / 11卷 / 01期
基金
中国国家自然科学基金;
关键词
Laplacian integral graphs; Laplacian matrix; Laplacian spectrum; integer eigenvalues; MATRICES; SPECTRUM;
D O I
10.1515/spma-2023-0111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The set S-i,S-n={0,1,2,& mldr;,n-1,n}\{i} , 1 <= i <= n , is called Laplacian realizable if there exists an undirected simple graph whose Laplacian spectrum is S-i,S-n . The existence of such graphs was established by Fallat et al. (On graphs whose Laplacian matrices have distinct integer eigenvalues, J. Graph Theory 50 (2005), 162-174). In this article, we consider graphs whose Laplacian spectra have the formS({i,j})m(n)={0,1,2,& mldr;,m-1,m,m,m+1,& mldr;,n-1,n}\{i,j}, 0 < i < j <= n,and completely describe those with m=n-1 and m=n . We also show close relations between graphs realizing S-i,S-n and S({i,j})m(n) and discuss the so-called S-n,S-n -conjecture and the corresponding conjecture for S({i,j})m(n) .
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Laplacian energy and first Zagreb index of Laplacian integral graphs
    Hameed, Abdul
    Khan, Zia Ullah
    Tyaglov, Mikhail
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (02): : 133 - 160
  • [2] Indecomposable Laplacian integral graphs
    Grone, Robert
    Merris, Russell
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1565 - 1570
  • [3] Laplacian eigenvalue distribution and diameter of graphs
    Xu, Leyou
    Zhou, Bo
    DISCRETE MATHEMATICS, 2024, 347 (07)
  • [4] Total Graphs Are Laplacian Integral
    Dolzan, David
    Oblak, Polona
    ALGEBRA COLLOQUIUM, 2022, 29 (03) : 427 - 436
  • [5] On the Laplacian integral tricyclic graphs
    Huang, Xueyi
    Huang, Qiongxiang
    Wen, Fei
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (07) : 1356 - 1371
  • [6] The multiplicity of Laplacian eigenvalue two in unicyclic graphs
    Akbari, Saieed
    Kiani, Dariush
    Mirzakhah, Maryam
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 445 : 18 - 28
  • [7] On integer matrices with integer eigenvalues and Laplacian integral graphs
    Barik, Sasmita
    Behera, Subhasish
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [8] On conjectures involving second largest signless Laplacian eigenvalue of graphs
    Das, Kinkar Ch.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 3018 - 3029
  • [9] Constructably Laplacian integral graphs
    Kirkland, Steve
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (01) : 3 - 21
  • [10] On the Conjecture for Certain Laplacian Integral Spectrum of Graphs
    Das, Kinkar Ch.
    Lee, Sang-Gu
    Cheon, Gi-Sang
    JOURNAL OF GRAPH THEORY, 2010, 63 (02) : 106 - 113