IMPROVING TRANSLATION INVARIANCE IN CONVOLUTIONAL NEURAL NETWORKS WITH PERIPHERAL PREDICTION PADDING

被引:1
作者
Mukai, Kensuke [1 ]
Yamanaka, Takao [1 ]
机构
[1] Sophia Univ, Dept Informat & Commun Sci, Tokyo, Japan
来源
2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2023年
关键词
Translation invariance; padding; CNN; semantic segmentation; positional information;
D O I
10.1109/ICIP49359.2023.10223102
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero padding is often used in convolutional neural networks to prevent the feature map size from decreasing with each layer. However, recent studies have shown that zero padding promotes encoding of absolute positional information, which may adversely affect the performance of some tasks. In this work, a novel padding method called Peripheral Prediction Padding (PP-Pad) method is proposed, which enables end-to-end training of padding values suitable for each task instead of zero padding. Moreover, novel metrics to quantitatively evaluate the translation invariance of the model are presented. By evaluating with these metrics, it was confirmed that the proposed method achieved higher accuracy and translation invariance than the previous methods in a semantic segmentation task.
引用
收藏
页码:945 / 949
页数:5
相关论文
共 23 条
[1]  
Alguacil A., 2021, ECML PKDD 2021
[2]  
Alsallakh B., NEURIPS 2021 WORKSH
[3]  
Alsallakh B., ICLR 2021
[4]  
Choi J., ICCV 2021
[5]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338
[6]  
Huang Y.H., 2021, ARXIV 2021
[7]   Learning on the Edge: Investigating Boundary Filters in CNNs [J].
Innamorati, Carlo ;
Ritschel, Tobias ;
Weyrich, Tim ;
Mitra, Niloy J. .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (04) :773-782
[8]  
Islam M.A., 2021, OPENREVIEW 2021
[9]  
Islam M.A., 2021, ARXIV 2021
[10]  
Islam M.A., ICLR 2020