Spinc-STRUCTURES AND SEIBERG-WITTEN EQUATIONS

被引:0
作者
Sergeev, A. G. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Spin(c)-structures; Dirac operator; Seiberg-Witten equations; adiabatic limit; MONOPOLES; DUALITY; SW; GR;
D O I
10.1134/S0040577923080044
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Seiberg-Witten equations, found at the end of the 20th century, are one of the main discoveries in the topology and geometry of four-dimensional Riemannian manifolds. They are defined in terms of a Spin(c)-structure that exists on any four-dimensional Riemannian manifold. Like the Yang-Mills equations, the Seiberg-Witten equations are the limit case of a more general supersymmetric Yang-Mills equations. However, unlike the conformally invariant Yang-Mills equations, the Seiberg-Witten equations are not scale invariant. Therefore, in order to obtain "useful information" from them, one must introduce a scale parameter lambda and pass to the limit as lambda -> 8. This is precisely the adiabatic limit studied in this paper.
引用
收藏
页码:1119 / 1123
页数:5
相关论文
共 10 条
[1]  
[Anonymous], 1989, Spin geometry
[2]   VORTICES IN HOLOMORPHIC LINE BUNDLES OVER CLOSED KAHLER-MANIFOLDS [J].
BRADLOW, SB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 135 (01) :1-17
[3]  
Jaffe A., 1980, VORTICES MONOPOLES
[4]   ELECTRIC-MAGNETIC DUALITY, MONOPOLE CONDENSATION, AND CONFINEMENT IN N=2 SUPERSYMMETRIC YANG-MILLS THEORY [J].
SEIBERG, N ;
WITTEN, E .
NUCLEAR PHYSICS B, 1994, 426 (01) :19-52
[5]   MONOPOLES, DUALITY AND CHIRAL-SYMMETRY BREAKING IN N=2 SUPERSYMMETRIC QCD [J].
SEIBERG, N ;
WITTEN, E .
NUCLEAR PHYSICS B, 1994, 431 (03) :484-550
[6]   Spin Geometry of Dirac and Noncommutative Geometry of Connes [J].
Sergeev, A. G. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2017, 298 (01) :256-293
[7]   Adiabatic limit in the Ginzburg-Landau and Seiberg-Witten equations [J].
Sergeev, A. G. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 289 (01) :227-285
[9]  
Taubes CH, 1999, J DIFFER GEOM, V51, P203
[10]  
Witten E, 1994, MATH RES LETT, V1, P769