Multi-scale, multi-dimensional binocular endoscopic image depth estimation network

被引:0
|
作者
Wang, Xiongzhi [1 ,2 ]
Nie, Yunfeng [3 ]
Ren, Wenqi [5 ]
Wei, Min [4 ]
Zhang, Jingang [1 ,2 ]
机构
[1] Univ Chinese Acad Sci, Sch Future Technol, Beijing 100039, Peoples R China
[2] Xidian Univ, Sch Aerosp Science&Technol, Xian 710071, Peoples R China
[3] Vrije Univ Brussel & Flanders Make, Dept Appl Phys & Photon, Brussel Photon, B-1050 Brussels, Belgium
[4] Chinese Acad Sci, State Key Lab Informat Secur, Inst Informat Engn, Beijing 100093, Peoples R China
[5] Chinese Peoples Liberat Army Gen Hosp, Med Ctr 4, Dept Orthoped, Beijing 100853, Peoples R China
基金
中国国家自然科学基金;
关键词
Depth estimation; Endoscopic datasets; Convolutional neural network; Stereoscopic vision; STEREO; COLONOSCOPY; LESIONS;
D O I
10.1016/j.compbiomed.2023.107305
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
During invasive surgery, the use of deep learning techniques to acquire depth information from lesion sites in real-time is hindered by the lack of endoscopic environmental datasets. This work aims to develop a high-accuracy three-dimensional (3D) simulation model for generating image datasets and acquiring depth information in real-time. Here, we proposed an end-to-end multi-scale supervisory depth estimation network (MMDENet) model for the depth estimation of pairs of binocular images. The proposed MMDENet highlights a multi-scale feature extraction module incorporating contextual information to enhance the correspondence precision of poorly exposed regions. A multi-dimensional information-guidance refinement module is also proposed to refine the initial coarse disparity map. Statistical experimentation demonstrated a 3.14% reduction in endpoint error compared to state-of-the-art methods. With a processing time of approximately 30fps, satisfying the requirements of real-time operation applications. In order to validate the performance of the trained MMDENet in actual endoscopic images, we conduct both qualitative and quantitative analysis with 93.38% high precision, which holds great promise for applications in surgical navigation.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] TMSO-Net: Texture adaptive multi-scale observation for light field image depth estimation
    Fu, Congrui
    Yuan, Hui
    Xu, Hongji
    Zhang, Hao
    Shen, Liquan
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 90
  • [22] A Multi-scale Dilated Residual Convolution Network for Image Denoising
    Jia, Xinlei
    Peng, Yali
    Ge, Bao
    Li, Jun
    Liu, Shigang
    Wang, Wenan
    NEURAL PROCESSING LETTERS, 2023, 55 (02) : 1231 - 1246
  • [23] A Multi-scale Dilated Residual Convolution Network for Image Denoising
    Xinlei Jia
    Yali Peng
    Bao Ge
    Jun Li
    Shigang Liu
    Wenan Wang
    Neural Processing Letters, 2023, 55 : 1231 - 1246
  • [24] Multi-scale Residual Network for Image Super-Resolution
    Li, Juncheng
    Fang, Faming
    Mei, Kangfu
    Zhang, Guixu
    COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 : 527 - 542
  • [25] FPattNet: A Multi-Scale Feature Fusion Network with Occlusion Awareness for Depth Estimation of Light Field Images
    Xiao, Min
    Lv, Chen
    Liu, Xiaomin
    SENSORS, 2023, 23 (17)
  • [26] Multi-Scale Neural Network With Dilated Convolutions for Image Deblurring
    Ople, Jose Jaena Mari
    Yeh, Pin-Yi
    Sun, Shih-Wei
    Tsai, I-Te
    Hua, Kai-Lung
    IEEE ACCESS, 2020, 8 : 53942 - 53952
  • [27] Multi-scale and multi-column convolutional neural network for crowd density estimation
    Lei Chen
    Guodong Wang
    Guojia Hou
    Multimedia Tools and Applications, 2021, 80 : 6661 - 6674
  • [28] Multi-scale and multi-column convolutional neural network for crowd density estimation
    Chen, Lei
    Wang, Guodong
    Hou, Guojia
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (05) : 6661 - 6674
  • [29] Multi-Scale and Multi-Branch Convolutional Neural Network for Retinal Image Segmentation
    Jiang, Yun
    Liu, Wenhuan
    Wu, Chao
    Yao, Huixiao
    SYMMETRY-BASEL, 2021, 13 (03): : 1 - 25
  • [30] Multi-Scale Feature Learning Convolutional Neural Network for Image Denoising
    Zhang, Shuo
    Liu, Chunyu
    Zhang, Yuxin
    Liu, Shuai
    Wang, Xun
    SENSORS, 2023, 23 (18)