The allotetraploid horseradish genome provides insights into subgenome diversification and formation of critical traits

被引:19
作者
Shen, Fei [1 ]
Xu, Shixiao [2 ]
Shen, Qi [3 ,4 ,5 ]
Bi, Changwei [6 ]
Lysak, Martin A. A. [7 ,8 ]
机构
[1] Beijing Acad Agr & Forestry Sci, Inst Biotechnol, Beijing, Peoples R China
[2] Henan Agr Univ, Tobacco Coll, Zhengzhou, Henan, Peoples R China
[3] Leeuwenhoek Biotechnol Inc, Genome Res Ctr, Hong Kong, Peoples R China
[4] Shangji Biotechnol Inc, Tianjin, Peoples R China
[5] Nanjing Agr Univ, Plant Phen Res Ctr, PheniX, Nanjing, Peoples R China
[6] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing, Peoples R China
[7] Masaryk Univ, Cent European Inst Technol, Fac Sci, Brno, Czech Republic
[8] Masaryk Univ, Fac Sci, Natl Ctr Biomol Res, Brno, Czech Republic
关键词
MULTIPLE SEQUENCE ALIGNMENT; GLUCOSINOLATE METABOLISM; PHYLOGENETIC ANALYSIS; GENE-EXPRESSION; POLYPLOIDY; TOOL; BRASSICACEAE; TRANSCRIPTOME; PREDICTION;
D O I
10.1038/s41467-023-39800-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Polyploidization can provide a wealth of genetic variation for adaptive evolution and speciation, but understanding the mechanisms of subgenome evolution as well as its dynamics and ultimate consequences remains elusive. Here, we report the telomere-to-telomere (T2T) gap-free reference genome of allotetraploid horseradish (Armoracia rusticana) sequenced using a comprehensive strategy. The (epi)genomic architecture and 3D chromatin structure of the A and B subgenomes differ significantly, suggesting that both the dynamics of the dominant long terminal repeat retrotransposons and DNA methylation have played critical roles in subgenome diversification. Investigation of the genetic basis of biosynthesis of glucosinolates (GSLs) and horseradish peroxidases reveals both the important role of polyploidization and subgenome differentiation in shaping the key traits. Continuous duplication and divergence of essential genes of GSL biosynthesis (e.g., FMOGS-OX, IGMT, and GH1 gene family) contribute to the broad GSL profile in horseradish. Overall, the T2T assembly of the allotetraploid horseradish genome expands our understanding of polyploid genome evolution and provides a fundamental genetic resource for breeding and genetic improvement of horseradish. Horseradish is a spicy root vegetable and it also produces horseradish peroxidase, an enzyme widely used in biochemistry applications. Here, the authors report its telomere-to-telomere reference genome, reveal subgenome diversification and the effect on the biosynthesis of glucosinolates and horseradish peroxidases.
引用
收藏
页数:19
相关论文
共 103 条
[1]   Cruciferous Vegetables, Isothiocyanates, and Bladder Cancer Prevention [J].
Abbaoui, Besma ;
Lucas, Christopher R. ;
Riedl, Ken M. ;
Clinton, Steven K. ;
Mortazavi, Amir .
MOLECULAR NUTRITION & FOOD RESEARCH, 2018, 62 (18)
[2]   Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing [J].
Adams, KL ;
Cronn, R ;
Percifield, R ;
Wendel, JF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (08) :4649-4654
[3]   Comparison of glucosinolate diversity in the crucifer tribe Cardamineae and the remaining order Brassicales highlights repetitive evolutionary loss and gain of biosynthetic steps [J].
Agerbirk, Niels ;
Hansen, Cecilie Cetti ;
Kiefer, Christiane ;
Hauser, Thure P. ;
Orgaard, Marian ;
Lange, Conny Bruun Asmussen ;
Cipollini, Don ;
Koch, Marcus A. .
PHYTOCHEMISTRY, 2021, 185
[4]   Horseradish (Armoracia rusticana), a neglected medical and condiment species with a relevant glucosinolate profile: a review [J].
Agneta, Rosa ;
Moellers, Christian ;
Rivelli, Anna Rita .
GENETIC RESOURCES AND CROP EVOLUTION, 2013, 60 (07) :1923-1943
[5]   The MEME Suite [J].
Bailey, Timothy L. ;
Johnson, James ;
Grant, Charles E. ;
Noble, William S. .
NUCLEIC ACIDS RESEARCH, 2015, 43 (W1) :W39-W49
[6]   The SWISS-PROT protein sequence data bank and its supplement TrEMBL [J].
Bairoch, A ;
Apweller, R .
NUCLEIC ACIDS RESEARCH, 1997, 25 (01) :31-36
[7]   Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense [J].
Barth, C ;
Jander, G .
PLANT JOURNAL, 2006, 46 (04) :549-562
[8]   A Glucosinolate Metabolism Pathway in Living Plant Cells Mediates Broad-Spectrum Antifungal Defense [J].
Bednarek, Pawel ;
Pislewska-Bednarek, Mariola ;
Svatos, Ales ;
Schneider, Bernd ;
Doubsky, Jan ;
Mansurova, Madina ;
Humphry, Matt ;
Consonni, Chiara ;
Panstruga, Ralph ;
Sanchez-Vallet, Andrea ;
Molina, Antonio ;
Schulze-Lefert, Paul .
SCIENCE, 2009, 323 (5910) :101-106
[9]   Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants [J].
Blazevic, Ivica ;
Montaut, Sabine ;
Burcul, Franko ;
Olsen, Carl Erik ;
Burow, Meike ;
Rollin, Patrick ;
Agerbirk, Niels .
PHYTOCHEMISTRY, 2020, 169
[10]   The genome sequence of Barbarea vulgaris facilitates the study of ecological biochemistry [J].
Byrne, Stephen L. ;
Erthmann, Pernille Osterbye ;
Agerbirk, Niels ;
Bak, Soren ;
Hauser, Thure Pavlo ;
Nagy, Istvan ;
Paina, Cristiana ;
Asp, Torben .
SCIENTIFIC REPORTS, 2017, 7