Enhanced laser-driven backward proton acceleration using micro-wire array targets

被引:1
|
作者
Fan, Lulin [1 ,2 ,3 ]
Xu, Tongjun [1 ,2 ]
Wang, Qingsong [1 ,2 ]
Xu, Jiancai [1 ,2 ]
Zhang, Guoqiang [4 ,5 ]
Wang, Putong [3 ,4 ]
Fu, Changbo [6 ]
Ma, Zhiguo [6 ]
Deng, Xiangai [6 ]
Ma, Yugang [6 ]
Li, Shun [1 ,2 ]
Lu, Xiaoming [1 ,2 ]
Li, Jinfeng [1 ,2 ]
Xu, Rongjie [1 ,2 ]
Wang, Cheng [1 ,2 ]
Liang, Xiaoyan [1 ,2 ]
Leng, Yuxin [1 ,2 ]
Shen, Baifei [1 ,2 ,7 ]
Ji, Liangliang [1 ,2 ]
Li, Ruxin [1 ,2 ,8 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, State Key Lab High Field Laser Phys, Shanghai, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, CAS Ctr Excellence Ultra Intense Laser Sci, Shanghai, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing, Peoples R China
[4] Chinses Acad Sci, Shanghai Inst Appl Phys, Shanghai, Peoples R China
[5] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai, Peoples R China
[6] Fudan Univ, Inst Modern Phys, Key Lab Nucl Phys & Ion Beam Applicat MOE, Shanghai, Peoples R China
[7] Shanghai Normal Univ, Dept Phys, Shanghai, Peoples R China
[8] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
laser-proton acceleration; micro-wire structure; high laser-proton energy coupling efficiency; high energy density plasma; laser-induced nuclear fusion; GENERATION;
D O I
10.3389/fphy.2023.1167927
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Micro-structured targets can be employed to enhance the coupling of laser energy to the high energy density plasma. Here we report on experimental measurement of enhanced proton beam energy from laser-driven micro-wire array (MWA) targets along the backward direction. An ultra-intense (similar to 2 x 10(20)W/cm(2)) laser pulse of similar to 40 fs pulse duration interacts with the MWA structure and induces large population of energetic electrons. The enhanced sheath field efficiently accelerates protons both transversely and longitudinally. The spectrometers record proton cut-off energy of around 16 MeV and temperature 813keV along the backward direction, which is 20% - 60% higher than that of a flat target under commensurate laser conditions. Comparison with particle-in-cell simulations suggests that the enhancement originates from the increased temperature and population of the hot electrons within the micro-wires. These measurements provide a direct probe of the high energy density plasma condition in laser-driven solid targets and a useful benchmark for further studies on laser-driven micro-structured targets.
引用
收藏
页数:9
相关论文
共 49 条
  • [31] Deep learning approaches for modeling laser-driven proton beams via phase-stable acceleration
    Liu, Yao-Li
    Chen, Yen-Chen
    Jao, Chun-Sung
    Wong, Mao-Syun
    Huang, Chun-Han
    Chen, Han-Wei
    Isayama, Shogo
    Kuramitsu, Yasuhiro
    PHYSICS OF PLASMAS, 2024, 31 (01)
  • [32] Bidimensional Particle-In-Cell simulations for laser-driven proton acceleration using ultra-short, ultra-high contrast laser
    Sciscio, M.
    D'Humieres, E.
    Fourmaux, S.
    Kieffer, J. C.
    Palumbo, L.
    Antici, P.
    PHYSICS OF PLASMAS, 2014, 21 (12)
  • [33] Versatile tape-drive target for high-repetition-rate laser-driven proton acceleration
    Xu, N.
    Streeter, M. J. V.
    Ettlinger, O. C.
    Ahmed, H.
    Astbury, S.
    Borghesi, M.
    Bourgeois, N.
    Curry, C. B.
    Dann, S. J. D.
    Dover, N. P.
    Dzelzainis, T.
    Istokskaia, V.
    Gauthier, M.
    Giuffrida, L.
    Glenn, G. D.
    Glenzer, S. H.
    Gray, R. J.
    Green, J. S.
    Hicks, G. S.
    Hyland, C.
    King, M.
    Loughran, B.
    Margarone, D.
    McCusker, O.
    McKenna, P.
    Parisuana, C.
    Parsons, P.
    Spindloe, C.
    Symes, D. R.
    Treffert, F.
    Palmer, C. A. J.
    Najmudin, Z.
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2023, 11
  • [34] Dosimetry and spectral analysis of a radiobiological experiment using laser-driven proton beams
    Fiorini, F.
    Kirby, D.
    Borghesi, M.
    Doria, D.
    Jeynes, J. C. G.
    Kakolee, K. F.
    Kar, S.
    Kaur, S.
    Kirby, K. J.
    Merchant, M. J.
    Green, S.
    PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (21): : 6969 - 6982
  • [35] THz cavities and injectors for compact electron acceleration using laser-driven THz sources
    Fakhari, Moein
    Fallahi, Arya
    Kaertner, Franz X.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2017, 20 (04):
  • [36] Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets
    Mirzaie, Mohammad
    Hafz, Nasr A. M.
    Li, Song
    Liu, Feng
    He, Fei
    Cheng, Ya
    Zhang, Jie
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (10):
  • [37] Enhanced laser-driven ion acceleration through random walk-based target modulation design
    Zhang, Pudu
    Wang, Weiquan
    Li, Ze
    Wei, Yuqing
    Zhou, Hongyu
    Zhang, Guobo
    Zou, Debin
    Yang, Xiaohu
    Yin, Yan
    Shao, Fuqiu
    PHYSICS OF PLASMAS, 2025, 32 (04)
  • [38] Enhanced proton acceleration using split intense femtosecond laser pulses
    Bai, R. X.
    Zhou, C. T.
    Huang, T. W.
    Jiang, K.
    Ju, L. B.
    Li, R.
    Peng, H.
    Yu, M. Y.
    Qiao, B.
    Ruan, S. C.
    He, X. T.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (08)
  • [39] Enhanced brightness of a laser-driven x-ray and particle source by microstructured surfaces of silicon targets
    Ebert, Tina
    Neumann, Nico W.
    Dohl, Leonard N. K.
    Jarrett, Jonathan
    Baird, Christopher
    Heathcote, Robert
    Hesse, Markus
    Hughes, Aasia
    McKenna, Paul
    Neely, David
    Rusby, Dean
    Schaumann, Gabriel
    Spindloe, Christopher
    Tebartz, Alexandra
    Woolsey, Nigel
    Roth, Markus
    PHYSICS OF PLASMAS, 2020, 27 (04)
  • [40] Enhanced positron acceleration driven by femto-second laser pulses irradiating structured targets
    Chintalwad, S.
    Krishnamurthy, S.
    Ghosh, S.
    Ridgers, C. P.
    Ramakrishna, B.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2024, 57 (08)