Three-Dimensional Bioprinting Applications for Bone Tissue Engineering

被引:26
作者
Maresca, Jamie A. A. [1 ]
DeMel, Derek C. C. [2 ]
Wagner, Grayson A. A. [2 ]
Haase, Colin [1 ]
Geibel, John P. P. [1 ,2 ,3 ]
机构
[1] Univ New Haven, John B Pierce Lab, New Haven, CT 06519 USA
[2] Yale Univ, Yale Sch Engn & Appl Sci, New Haven, CT 06519 USA
[3] Yale Univ, Sch Med, Dept Surg, New Haven, CT 06519 USA
关键词
hydrogels; bioink; osteoblast; mesenchymal stem cell; bone replacement; scaffold; REDUCTION INTERNAL-FIXATION; TOTAL HIP-ARTHROPLASTY; 3D PRINTED SCAFFOLDS; IN-VITRO; MATRIX; FRACTURES; ALGINATE;
D O I
10.3390/cells12091230
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The skeletal system is a key support structure within the body. Bones have unique abilities to grow and regenerate after injury. Some injuries or degeneration of the tissues cannot rebound and must be repaired by the implantation of foreign objects following injury or disease. This process is invasive and does not always improve the quality of life of the patient. New techniques have arisen that can improve bone replacement or repair. 3D bioprinting employs a printer capable of printing biological materials in multiple directions. 3D bioprinting potentially requires multiple steps and additional support structures, which may include the use of hydrogels for scaffolding. In this review, we discuss normal bone physiology and pathophysiology and how bioprinting can be adapted to further the field of bone tissue engineering.
引用
收藏
页数:16
相关论文
共 77 条
[1]  
Alba B., 2018, Plast. Reconstr. Surg. Glob. Open, V6, P98, DOI [10.1097/01.GOX.0000546950.64387.8d, DOI 10.1097/01.GOX.0000546950.64387.8D]
[2]  
Amini Ami R, 2011, J Long Term Eff Med Implants, V21, P93
[3]   Advancing Frontiers in Bone Bioprinting [J].
Ashammakhi, Nureddin ;
Hasan, Anwarul ;
Kaarela, Outi ;
Byambaa, Batzaya ;
Sheikhi, Amir ;
Gaharwar, Akhilesh K. ;
Khademhosseini, Ali .
ADVANCED HEALTHCARE MATERIALS, 2019, 8 (07)
[4]   The pathology of total joint arthroplasty - II. Mechanisms of implant failure [J].
Bauer, TW ;
Schils, J .
SKELETAL RADIOLOGY, 1999, 28 (09) :483-497
[5]   Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds [J].
Bendtsen, Stephanie T. ;
Quinnell, Sean P. ;
Wei, Mei .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2017, 105 (05) :1457-1468
[6]   Basic concepts regarding fracture healing and the current options and future directions in managing bone fractures [J].
Bigham-Sadegh, Amin ;
Oryan, Ahmad .
INTERNATIONAL WOUND JOURNAL, 2015, 12 (03) :238-247
[7]   Open Reduction Internal Fixation and Primary Total Hip Arthroplasty of Selected Acetabular Fractures [J].
Boraiah, Sreevathsa ;
Ragsdale, Mary ;
Achor, Timothy ;
Zelicof, Steven ;
Asprinio, David E. .
JOURNAL OF ORTHOPAEDIC TRAUMA, 2009, 23 (04) :243-248
[8]   Bone tissue engineering using 3D printing [J].
Bose, Susmita ;
Vahabzadeh, Sahar ;
Bandyopadhyay, Amit .
MATERIALS TODAY, 2013, 16 (12) :496-504
[9]   In vitro and in vivo assessment of a 3D printable gelatin methacrylate hydrogel for bone regeneration applications [J].
Celikkin, Nehar ;
Mastrogiacomo, Simone ;
Dou, Weiqiang ;
Heerschap, Arend ;
Oosterwijk, Egbert ;
Walboomers, X. Frank ;
Swieszkowski, Wojciech .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2022, 110 (09) :2133-2145
[10]   PCL-MECM-Based Hydrogel Hybrid Scaffolds and Meniscal Fibrochondrocytes Promote Whole Meniscus Regeneration in a Rabbit Meniscectomy Model [J].
Chen, Mingxue ;
Feng, Zhaoxuan ;
Guo, Weimin ;
Yan, Dejin ;
Gao, Shuang ;
Li, Yangyang ;
Shen, Shi ;
Yuan, Zhiguo ;
Huang, Bo ;
Zhang, Yu ;
Wang, Mingjie ;
Li, Xu ;
Hao, Libo ;
Peng, Jiang ;
Liu, Shuyun ;
Zhou, Yixin ;
Guo, Quanyi .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (44) :41626-41639