Three-Dimensional Bioprinting Applications for Bone Tissue Engineering

被引:23
|
作者
Maresca, Jamie A. A. [1 ]
DeMel, Derek C. C. [2 ]
Wagner, Grayson A. A. [2 ]
Haase, Colin [1 ]
Geibel, John P. P. [1 ,2 ,3 ]
机构
[1] Univ New Haven, John B Pierce Lab, New Haven, CT 06519 USA
[2] Yale Univ, Yale Sch Engn & Appl Sci, New Haven, CT 06519 USA
[3] Yale Univ, Sch Med, Dept Surg, New Haven, CT 06519 USA
关键词
hydrogels; bioink; osteoblast; mesenchymal stem cell; bone replacement; scaffold; REDUCTION INTERNAL-FIXATION; TOTAL HIP-ARTHROPLASTY; 3D PRINTED SCAFFOLDS; IN-VITRO; MATRIX; FRACTURES; ALGINATE;
D O I
10.3390/cells12091230
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The skeletal system is a key support structure within the body. Bones have unique abilities to grow and regenerate after injury. Some injuries or degeneration of the tissues cannot rebound and must be repaired by the implantation of foreign objects following injury or disease. This process is invasive and does not always improve the quality of life of the patient. New techniques have arisen that can improve bone replacement or repair. 3D bioprinting employs a printer capable of printing biological materials in multiple directions. 3D bioprinting potentially requires multiple steps and additional support structures, which may include the use of hydrogels for scaffolding. In this review, we discuss normal bone physiology and pathophysiology and how bioprinting can be adapted to further the field of bone tissue engineering.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Tissue Engineering Applications of Three-Dimensional Bioprinting
    Xiaoying Zhang
    Yangde Zhang
    Cell Biochemistry and Biophysics, 2015, 72 : 777 - 782
  • [2] Tissue Engineering Applications of Three-Dimensional Bioprinting
    Zhang, Xiaoying
    Zhang, Yangde
    CELL BIOCHEMISTRY AND BIOPHYSICS, 2015, 72 (03) : 777 - 782
  • [3] Three-Dimensional Bioprinting Strategies for Tissue Engineering
    Zhang, Yu Shrike
    Oklu, Rahmi
    Dokmeci, Mehmet Remzi
    Khademhosseini, Ali
    COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2018, 8 (02):
  • [4] Three-Dimensional Bioprinting for Retinal Tissue Engineering
    Wu, Kevin Y.
    Osman, Rahma
    Kearn, Natalie
    Kalevar, Ananda
    BIOMIMETICS, 2024, 9 (12)
  • [5] Three-dimensional bioprinting vascularized bone tissue
    Hadis Gharacheh
    Murat Guvendiren
    MRS Bulletin, 2023, 48 : 668 - 675
  • [6] Three-dimensional bioprinting for bone tissue regeneration
    Adepu, Shivakalyani
    Dhiman, Nandini
    Laha, Anindita
    Sharma, Chandra S.
    Ramakrishna, Seeram
    Khandelwal, Mudrika
    CURRENT OPINION IN BIOMEDICAL ENGINEERING, 2017, 2 : 22 - 28
  • [7] Three-dimensional bioprinting vascularized bone tissue
    Gharacheh, Hadis
    Guvendiren, Murat
    MRS BULLETIN, 2023, 48 (06) : 668 - 675
  • [8] Three-Dimensional Bioprinting: A Comprehensive Review for Applications in Tissue Engineering and Regenerative Medicine
    Mirsky, Nicholas A.
    Ehlen, Quinn T.
    Greenfield, Jason A.
    Antonietti, Michael
    Slavin, Blaire V.
    Nayak, Vasudev Vivekanand
    Pelaez, Daniel
    Tse, David T.
    Witek, Lukasz
    Daunert, Sylvia
    Coelho, Paulo G.
    BIOENGINEERING-BASEL, 2024, 11 (08):
  • [9] Advances in three-dimensional bioprinting for hard tissue engineering
    Park, Sang-Hyug
    Jung, Chi Sung
    Min, Byoung-Hyun
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2016, 13 (06) : 622 - 635
  • [10] Three-dimensional direct cell bioprinting for tissue engineering
    Ozler, Saime Burce
    Bakirci, Ezgi
    Kucukgul, Can
    Koc, Bahattin
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2017, 105 (08) : 2530 - 2544