Thalamus Segmentation Using Deep Learning with Diffusion MRI Data: An Open Benchmark

被引:1
|
作者
Pinheiro, Gustavo Retuci [1 ]
Brusini, Lorenza [2 ]
Carmo, Diedre [1 ]
Proa, Renata [1 ,3 ]
Abreu, Thays [1 ]
Appenzeller, Simone [4 ]
Menegaz, Gloria [2 ]
Rittner, Leticia [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, BR-13083852 Campinas, Brazil
[2] Univ Verona, Dept Comp Sci, I-37129 Verona, Italy
[3] Univ Sao Paulo, Inst Math & Stat, BR-14887900 Sao Paulo, Brazil
[4] Univ Estadual Campinas, Sch Med Sci, BR-13083887 Campinas, Brazil
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 09期
基金
巴西圣保罗研究基金会;
关键词
thalamus; segmentation; diffusion MRI; public dataset; deep learning; benchmark; IMAGE SEGMENTATION; VALIDATION; TENSOR; ALGORITHM; QUALITY; PROJECT;
D O I
10.3390/app13095284
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The thalamus is a subcortical brain structure linked to the motor system. Since certain changes within this structure are related to diseases, such as multiple sclerosis and Parkinson's, the characterization of the thalamus-e.g., shape assessment-is a crucial step in relevant studies and applications, including medical research and surgical planning. A robust and reliable thalamus-segmentation method is therefore, required to meet these demands. Despite presenting low contrast for this particular structure, T1-weighted imaging is still the most common MRI sequence for thalamus segmentation. However, diffusion MRI (dMRI) captures different micro-structural details of the biological tissue and reveals more contrast of the thalamic borders, thereby serving as a better candidate for thalamus-segmentation methods. Accordingly, we propose a baseline multimodality thalamus-segmentation pipeline that combines dMRI and T1-weighted images within a CNN approach, achieving state-of-the-art levels of Dice overlap. Furthermore, we are hosting an open benchmark with a large, preprocessed, publicly available dataset that includes co-registered, T1-weighted, dMRI, manual thalamic masks; masks generated by three distinct automated methods; and a STAPLE consensus of the masks. The dataset, code, environment, and instructions for the benchmark leaderboard can be found on our GitHub and CodaLab.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Minimally interactive segmentation of soft-tissue tumors on CT and MRI using deep learning
    Spaanderman, Douwe J.
    Starmans, Martijn P. A.
    van Erp, Gonnie C. M.
    Hanff, David F.
    Sluijter, Judith H.
    Schut, Anne-Rose W.
    van Leenders, Geert J. L. H.
    Verhoef, Cornelis
    Gruenhagen, Dirk J.
    Niessen, Wiro J.
    Visser, Jacob J.
    Klein, Stefan
    EUROPEAN RADIOLOGY, 2024, : 2736 - 2745
  • [42] Deep Learning on chromatographic data for Segmentation and Sensitive Analysis
    Qin, Qi
    Wang, Kan
    Xu, Hao
    Cao, Bo
    Zheng, Wei
    Jin, Qinghui
    Cui, Daxiang
    JOURNAL OF CHROMATOGRAPHY A, 2020, 1634
  • [43] Hough-CNN: Deep learning for segmentation of deep brain regions in MRI and ultrasound
    Milletari, Fausto
    Ahmadi, Seyed-Ahmad
    Kroll, Christine
    Plate, Annika
    Rozanski, Verena
    Maiostre, Juliana
    Levin, Johannes
    Dietrich, Olaf
    Ertl-Wagner, Birgit
    Boetzel, Kai
    Navab, Nassir
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, 164 : 92 - 102
  • [44] Iris Segmentation Using Interactive Deep Learning
    Sardar, Mousumi
    Banerjee, Subhashis
    Mitra, Sushmita
    IEEE ACCESS, 2020, 8 : 219322 - 219330
  • [45] Image Segmentation Using Deep Learning: A Survey
    Minaee, Shervin
    Boykov, Yuri Y.
    Porikli, Fatih
    Plaza, Antonio J.
    Kehtarnavaz, Nasser
    Terzopoulos, Demetri
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3523 - 3542
  • [46] Accurate Bayesian segmentation of thalamic nuclei using diffusion MRI and an improved histological atlas
    Tregidgo, Henry F. J.
    Soskic, Sonja
    Althonayan, Juri
    Maffei, Chiara
    Van Leemput, Koen
    Golland, Polina
    Insausti, Ricardo
    Lerma-Usabiaga, Garikoitz
    Caballero-Gaudes, Cesar
    Paz-Alonso, Pedro M.
    Yendiki, Anastasia
    Alexander, Daniel C.
    Bocchetta, Martina
    Rohrer, Jonathan D.
    Iglesias, Juan Eugenio
    NEUROIMAGE, 2023, 274
  • [47] Segmentation of High Angular Resolution Diffusion MRI Using Sparse Riemannian Manifold Clustering
    Cetingul, H. Ertan
    Wright, Margaret J.
    Thompson, Paul M.
    Vidal, Rene
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (02) : 301 - 317
  • [48] A Multi-Task Based Deep Learning Framework With Landmark Detection for MRI Couinaud Segmentation
    Miao, Dong
    Zhao, Ying
    Ren, Xue
    Dou, Meng
    Yao, Yu
    Xu, Yiran
    Cui, Yingchao
    Liu, Ailian
    IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE, 2024, 12 : 697 - 710
  • [49] DLIO: A Data-Centric Benchmark for Scientific Deep Learning Applications
    Devarajan, Hariharan
    Zheng, Huihuo
    Kougkas, Anthony
    Sun, Xian-He
    Vishwanath, Venkatram
    21ST IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING (CCGRID 2021), 2021, : 81 - 91
  • [50] Automatic segmentation of deep endometriosis in the rectosigmoid using deep learning
    Figueredo, Weslley Kelson Ribeiro
    Silva, Aristofanes Correa
    de Paiva, Anselmo Cardoso
    Diniz, Joao Otavio Bandeira
    Brandao, Alice
    Oliveira, Marco Aurelio Pinho
    IMAGE AND VISION COMPUTING, 2024, 151