Thalamus Segmentation Using Deep Learning with Diffusion MRI Data: An Open Benchmark

被引:1
|
作者
Pinheiro, Gustavo Retuci [1 ]
Brusini, Lorenza [2 ]
Carmo, Diedre [1 ]
Proa, Renata [1 ,3 ]
Abreu, Thays [1 ]
Appenzeller, Simone [4 ]
Menegaz, Gloria [2 ]
Rittner, Leticia [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, BR-13083852 Campinas, Brazil
[2] Univ Verona, Dept Comp Sci, I-37129 Verona, Italy
[3] Univ Sao Paulo, Inst Math & Stat, BR-14887900 Sao Paulo, Brazil
[4] Univ Estadual Campinas, Sch Med Sci, BR-13083887 Campinas, Brazil
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 09期
基金
巴西圣保罗研究基金会;
关键词
thalamus; segmentation; diffusion MRI; public dataset; deep learning; benchmark; IMAGE SEGMENTATION; VALIDATION; TENSOR; ALGORITHM; QUALITY; PROJECT;
D O I
10.3390/app13095284
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The thalamus is a subcortical brain structure linked to the motor system. Since certain changes within this structure are related to diseases, such as multiple sclerosis and Parkinson's, the characterization of the thalamus-e.g., shape assessment-is a crucial step in relevant studies and applications, including medical research and surgical planning. A robust and reliable thalamus-segmentation method is therefore, required to meet these demands. Despite presenting low contrast for this particular structure, T1-weighted imaging is still the most common MRI sequence for thalamus segmentation. However, diffusion MRI (dMRI) captures different micro-structural details of the biological tissue and reveals more contrast of the thalamic borders, thereby serving as a better candidate for thalamus-segmentation methods. Accordingly, we propose a baseline multimodality thalamus-segmentation pipeline that combines dMRI and T1-weighted images within a CNN approach, achieving state-of-the-art levels of Dice overlap. Furthermore, we are hosting an open benchmark with a large, preprocessed, publicly available dataset that includes co-registered, T1-weighted, dMRI, manual thalamic masks; masks generated by three distinct automated methods; and a STAPLE consensus of the masks. The dataset, code, environment, and instructions for the benchmark leaderboard can be found on our GitHub and CodaLab.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Automatic Segmentation of Head and Neck Cancer from PET-MRI Data Using Deep Learning
    Joonas Liedes
    Henri Hellström
    Oona Rainio
    Sarita Murtojärvi
    Simona Malaspina
    Jussi Hirvonen
    Riku Klén
    Jukka Kemppainen
    Journal of Medical and Biological Engineering, 2023, 43 : 532 - 540
  • [32] Automatic segmentation of ameloblastoma on ct images using deep learning with limited data
    Xu, Liang
    Qiu, Kaixi
    Li, Kaiwang
    Ying, Ge
    Huang, Xiaohong
    Zhu, Xiaofeng
    BMC ORAL HEALTH, 2024, 24 (01)
  • [33] Automatic segmentation of ameloblastoma on ct images using deep learning with limited data
    Liang Xu
    Kaixi Qiu
    Kaiwang Li
    Ge Ying
    Xiaohong Huang
    Xiaofeng Zhu
    BMC Oral Health, 24
  • [34] SEGMENTATION OF MRI DATA BY MEANS OF NONLINEAR DIFFUSION
    Chabiniok, Radomir
    Maca, Radek
    Renes, Michal
    Tintera, Jaroslav
    KYBERNETIKA, 2013, 49 (02) : 301 - 318
  • [35] Segmentation of retinal arteries and veins using deep learning with limited training data
    Salah, Ahmed Tamer
    Khoriba, Ghada
    Rashed, Essam A.
    9TH INTERNATIONAL CONFERENCE ON MULTIMEDIA AND IMAGE PROCESSING, ICMIP 2024, 2024, : 146 - 151
  • [36] Atlas-Powered Deep Learning (ADL) - Application to Diffusion Weighted MRI
    Karimi, Davood
    Gholipour, Ali
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT I, 2022, 13431 : 123 - 132
  • [37] Cardiac MRI Semantic Segmentation for Ventricles and Myocardium Using Deep Learning
    Mukisa, Racheal
    Bansal, Arvind K.
    INTELLIGENT COMPUTING, VOL 3, 2024, 2024, 1018 : 169 - 188
  • [38] Automated Segmentation of Brain Tumor MRI Images Using Deep Learning
    Rajendran, Surendran
    Rajagopal, Suresh Kumar
    Thanarajan, Tamilvizhi
    Shankar, K.
    Kumar, Sachin
    Alsubaie, Najah M.
    Ishak, Mohamad Khairi
    Mostafa, Samih M.
    IEEE ACCESS, 2023, 11 : 64758 - 64768
  • [39] Mediastinal Lymph Node Detection and Segmentation Using Deep Learning
    Nayan, Al-Akhir
    Kijsirikul, Boonserm
    Iwahori, Yuji
    IEEE ACCESS, 2022, 10 : 89289 - 89307
  • [40] Automatic segmentation of neurovascular bundle on mri using deep learning based topological modulated network
    Lei, Yang
    Wang, Tonghe
    Roper, Justin
    Tian, Sibo
    Patel, Pretesh
    Bradley, Jeffrey D.
    Jani, Ashesh B.
    Liu, Tian
    Yang, Xiaofeng
    MEDICAL PHYSICS, 2023, 50 (09) : 5479 - 5488