Thalamus Segmentation Using Deep Learning with Diffusion MRI Data: An Open Benchmark

被引:1
|
作者
Pinheiro, Gustavo Retuci [1 ]
Brusini, Lorenza [2 ]
Carmo, Diedre [1 ]
Proa, Renata [1 ,3 ]
Abreu, Thays [1 ]
Appenzeller, Simone [4 ]
Menegaz, Gloria [2 ]
Rittner, Leticia [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, BR-13083852 Campinas, Brazil
[2] Univ Verona, Dept Comp Sci, I-37129 Verona, Italy
[3] Univ Sao Paulo, Inst Math & Stat, BR-14887900 Sao Paulo, Brazil
[4] Univ Estadual Campinas, Sch Med Sci, BR-13083887 Campinas, Brazil
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 09期
基金
巴西圣保罗研究基金会;
关键词
thalamus; segmentation; diffusion MRI; public dataset; deep learning; benchmark; IMAGE SEGMENTATION; VALIDATION; TENSOR; ALGORITHM; QUALITY; PROJECT;
D O I
10.3390/app13095284
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The thalamus is a subcortical brain structure linked to the motor system. Since certain changes within this structure are related to diseases, such as multiple sclerosis and Parkinson's, the characterization of the thalamus-e.g., shape assessment-is a crucial step in relevant studies and applications, including medical research and surgical planning. A robust and reliable thalamus-segmentation method is therefore, required to meet these demands. Despite presenting low contrast for this particular structure, T1-weighted imaging is still the most common MRI sequence for thalamus segmentation. However, diffusion MRI (dMRI) captures different micro-structural details of the biological tissue and reveals more contrast of the thalamic borders, thereby serving as a better candidate for thalamus-segmentation methods. Accordingly, we propose a baseline multimodality thalamus-segmentation pipeline that combines dMRI and T1-weighted images within a CNN approach, achieving state-of-the-art levels of Dice overlap. Furthermore, we are hosting an open benchmark with a large, preprocessed, publicly available dataset that includes co-registered, T1-weighted, dMRI, manual thalamic masks; masks generated by three distinct automated methods; and a STAPLE consensus of the masks. The dataset, code, environment, and instructions for the benchmark leaderboard can be found on our GitHub and CodaLab.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Deep learning prediction of diffusion MRI data with microstructure-sensitive loss functions
    Chen, Geng
    Hong, Yoonmi
    Huynh, Khoi Minh
    Yap, Pew-Thian
    MEDICAL IMAGE ANALYSIS, 2023, 85
  • [22] Retinal Vessel Segmentation Using Deep Learning: A Review
    Chen, Chunhui
    Chuah, Joon Huang
    Ali, Raza
    Wang, Yizhou
    IEEE ACCESS, 2021, 9 : 111985 - 112004
  • [23] Deep Learning-Based Automatic Segmentation for Reconstructing Vertebral Anatomy of Healthy Adolescents and Patients With Adolescent Idiopathic Scoliosis (AIS) Using MRI Data
    Antico, M.
    Little, J. P.
    Jennings, H.
    Askin, G.
    Labrom, R. D.
    Fontanarosa, D.
    Pivonka, P.
    IEEE ACCESS, 2021, 9 : 86811 - 86823
  • [24] Machine learning and deep learning for brain tumor MRI image segmentation
    Khan, Md Kamrul Hasan
    Guo, Wenjing
    Liu, Jie
    Dong, Fan
    Li, Zoe
    Patterson, Tucker A.
    Hong, Huixiao
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2023, 248 (21) : 1974 - 1992
  • [25] TuMore: Generation of Synthetic Brain Tumor MRI Data for Deep Learning Based Segmentation Approaches
    Lindner, Lydia
    Pfarrkirchner, Birgit
    Gsaxner, Christina
    Schmalstieg, Dieter
    Egger, Jan
    MEDICAL IMAGING 2018: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2018, 10579
  • [26] Automatic Segmentation of Head and Neck Cancer from PET-MRI Data Using Deep Learning
    Liedes, Joonas
    Hellstrom, Henri
    Rainio, Oona
    Murtojarvi, Sarita
    Malaspina, Simona
    Hirvonen, Jussi
    Klen, Riku
    Kemppainen, Jukka
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2023, 43 (05) : 532 - 540
  • [27] Segmentation of epicardial adipose tissue in cardiac MRI using deep learning
    Fulton, Miranda R.
    Givan, Amy H.
    Fernandez-del-Valle, Maria
    Klingensmith, Jon D.
    MEDICAL IMAGING 2020: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11317
  • [28] Automated Segmentation of Hyperintense Regions in FLAIR MRI Using Deep Learning
    Korfiatis, Panagiotis
    Kline, Timothy L.
    Erickson, Bradley J.
    TOMOGRAPHY, 2016, 2 (04) : 334 - 340
  • [29] Automatic Myocardial Segmentation by Using A Deep Learning Network in Cardiac MRI
    Curiale, Ariel H.
    Colavecchia, Flavio D.
    Kaluza, Pablo
    Isoardi, Roberto A.
    Mato, German
    2017 XLIII LATIN AMERICAN COMPUTER CONFERENCE (CLEI), 2017,
  • [30] Validation of deep learning techniques for quality augmentation in diffusion MRI for clinical studies
    Aja-Fernandez, Santiago
    Martin-Martin, Carmen
    Planchuelo-Gomez, Alvaro
    Faiyaz, Abrar
    Uddin, Md Nasir
    Schifitto, Giovanni
    Tiwari, Abhishek
    Shigwan, Saurabh J.
    Singh, Rajeev Kumar
    Zheng, Tianshu
    Cao, Zuozhen
    Wu, Dan
    Blumberg, Stefano B.
    Sen, Snigdha
    Goodwin-Allcock, Tobias
    Slator, Paddy J.
    Avci, Mehmet Yigit
    Li, Zihan
    Bilgic, Berkin
    Tian, Qiyuan
    Wang, Xinyi
    Tang, Zihao
    Cabezas, Mariano
    Rauland, Amelie
    Merhof, Dorit
    Maria, Renata Manzano
    Campos, Vinicius Paraniba
    Santini, Tales
    Vieira, Marcelo Andrade da Costa
    Hashemizadehkolowri, Seyyedkazem
    Dibella, Edward
    Peng, Chenxu
    Shen, Zhimin
    Chen, Zan
    Ullah, Irfan
    Mani, Merry
    Abdolmotalleby, Hesam
    Eckstrom, Samuel
    Baete, Steven H.
    Filipiak, Patryk
    Dong, Tanxin
    Fan, Qiuyun
    de Luis-Garcia, Rodrigo
    Tristan-Vega, Antonio
    Pieciak, Tomasz
    NEUROIMAGE-CLINICAL, 2023, 39