Thalamus Segmentation Using Deep Learning with Diffusion MRI Data: An Open Benchmark

被引:1
|
作者
Pinheiro, Gustavo Retuci [1 ]
Brusini, Lorenza [2 ]
Carmo, Diedre [1 ]
Proa, Renata [1 ,3 ]
Abreu, Thays [1 ]
Appenzeller, Simone [4 ]
Menegaz, Gloria [2 ]
Rittner, Leticia [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, BR-13083852 Campinas, Brazil
[2] Univ Verona, Dept Comp Sci, I-37129 Verona, Italy
[3] Univ Sao Paulo, Inst Math & Stat, BR-14887900 Sao Paulo, Brazil
[4] Univ Estadual Campinas, Sch Med Sci, BR-13083887 Campinas, Brazil
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 09期
基金
巴西圣保罗研究基金会;
关键词
thalamus; segmentation; diffusion MRI; public dataset; deep learning; benchmark; IMAGE SEGMENTATION; VALIDATION; TENSOR; ALGORITHM; QUALITY; PROJECT;
D O I
10.3390/app13095284
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The thalamus is a subcortical brain structure linked to the motor system. Since certain changes within this structure are related to diseases, such as multiple sclerosis and Parkinson's, the characterization of the thalamus-e.g., shape assessment-is a crucial step in relevant studies and applications, including medical research and surgical planning. A robust and reliable thalamus-segmentation method is therefore, required to meet these demands. Despite presenting low contrast for this particular structure, T1-weighted imaging is still the most common MRI sequence for thalamus segmentation. However, diffusion MRI (dMRI) captures different micro-structural details of the biological tissue and reveals more contrast of the thalamic borders, thereby serving as a better candidate for thalamus-segmentation methods. Accordingly, we propose a baseline multimodality thalamus-segmentation pipeline that combines dMRI and T1-weighted images within a CNN approach, achieving state-of-the-art levels of Dice overlap. Furthermore, we are hosting an open benchmark with a large, preprocessed, publicly available dataset that includes co-registered, T1-weighted, dMRI, manual thalamic masks; masks generated by three distinct automated methods; and a STAPLE consensus of the masks. The dataset, code, environment, and instructions for the benchmark leaderboard can be found on our GitHub and CodaLab.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Diffusion MRI and Silver Standard Masks to Improve CNN-based Thalamus Segmentation
    Pinheiro, G. R.
    Brusini, L.
    Bajrami, A.
    Pizzini, F. B.
    Calabrese, M.
    Reis, F.
    Appenzeller, S.
    Menegaz, G.
    Rittner, L.
    MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596
  • [2] Volumetric Segmentation of the Corpus Callosum: Training a Deep Learning model on diffusion MRI
    Rodrigues, Joany
    Pinheiro, Gustavo
    Carmo, Diedre
    Rittner, Leticia
    17TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2021, 12088
  • [3] Developments in Brain Tumor Segmentation Using MRI: Deep Learning Insights and Future Perspectives
    Karim, Shahid
    Tong, Geng
    Yu, Yiting
    Laghari, Asif Ali
    Khan, Abdullah Ayub
    Ibrar, Muhammad
    Mehmood, Faisal
    IEEE ACCESS, 2024, 12 : 26875 - 26896
  • [4] Deep Diffusion MRI Registration (DDMReg): A Deep Learning Method for Diffusion MRI Registration
    Zhang, Fan
    Wells, William M., III
    O'Donnell, Lauren J.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (06) : 1454 - 1467
  • [5] A Study on Heart Segmentation Using Deep Learning Algorithm for MRI Scans
    Ibrahim, Shakeel Muhammad
    Ibrahim, Muhammad Sohail
    Usman, Muhammad
    Naseem, Imran
    Moinuddin, Muhammad
    2019 13TH INTERNATIONAL CONFERENCE ON MATHEMATICS, ACTUARIAL SCIENCE, COMPUTER SCIENCE AND STATISTICS (MACS-13), 2019,
  • [6] Automated claustrum segmentation in human brain MRI using deep learning
    Li, Hongwei
    Menegaux, Aurore
    Schmitz-Koep, Benita
    Neubauer, Antonia
    Baeuerlein, Felix J. B.
    Shit, Suprosanna
    Sorg, Christian
    Menze, Bjoern
    Hedderich, Dennis
    HUMAN BRAIN MAPPING, 2021, 42 (18) : 5862 - 5872
  • [7] Longitudinal diffusion MRI analysis using Segis-Net: A single-step deep-learning framework for simultaneous segmentation and registration
    Li, Bo
    Niessen, Wiro J.
    Klein, Stefan
    de Groot, Marius
    Ikram, M. Arfan
    Vernooij, Meike W.
    Bron, Esther E.
    NEUROIMAGE, 2021, 235
  • [8] Image Segmentation for Radar Signal Deinterleaving Using Deep Learning
    Nuhoglu, Mustafa Atahan
    Alp, Yasar Kemal
    Ulusoy, Mehmet Ege Can
    Cirpan, Hakan Ali
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (01) : 541 - 554
  • [9] Segmentation of Masses on Mammograms Using Data Augmentation and Deep Learning
    Zeiser, Felipe Andre
    da Costa, Cristiano Andre
    Zonta, Tiago
    Marques, Nuno M. C.
    Roehe, Adriana Vial
    Moreno, Marcelo
    Righi, Rodrigo da Rosa
    JOURNAL OF DIGITAL IMAGING, 2020, 33 (04) : 858 - 868
  • [10] Segmentation of Masses on Mammograms Using Data Augmentation and Deep Learning
    Felipe André Zeiser
    Cristiano André da Costa
    Tiago Zonta
    Nuno M. C. Marques
    Adriana Vial Roehe
    Marcelo Moreno
    Rodrigo da Rosa Righi
    Journal of Digital Imaging, 2020, 33 : 858 - 868