Polynomial time algorithm for k-vertex-edge dominating problem in interval graphs

被引:2
作者
Li, Peng [1 ]
Wang, Aifa [1 ]
机构
[1] Chongqing Univ Technol, 69 Hongguang Rd, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
Vertex-edge domination; Double vertex-edge domination; k-vertex-edge domination; Polynomial time algorithm; Interval graphs;
D O I
10.1007/s10878-022-00982-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let G be a connected interval graph with n vertices and m edges. For any positive integer k and any subset S of E(G), we design an O(k|S| + m) time algorithm to find a minimum k-vertex-edge dominating set of G with respect to S. This shows that the vertex-edge domination problem and the double vertex-edge domination problem can be solved in linear time. Furthermore, the k-vertex-edge domination problem can also be solved in O(km) time algorithm in interval graphs. Finally, we present a linear time algorithm to solve the independent vertex-edge domination problem for unit interval graphs.
引用
收藏
页数:16
相关论文
共 20 条
[1]   Total vertex-edge domination [J].
Boutrig, Razika ;
Chellali, Mustapha .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (09) :1820-1828
[2]   Vertex-edge domination in graphs [J].
Boutrig, Razika ;
Chellali, Mustapha ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. .
AEQUATIONES MATHEMATICAE, 2016, 90 (02) :355-366
[3]  
Fishburn PC, 1985, INTERVAL ORDERS INTE
[4]  
Golumbic M.C., 2004, ALGORITHMIC GRAPH TH, V57
[5]  
Haynes Teresa W., 1998, FUNDAMENTALS DOMINAT
[6]  
Krishnakumari B, 2017, DISCRET MATH ALGORIT, V9, DOI 10.1142/S1793830917500458
[7]   Bounds on the vertex-edge domination number of a tree [J].
Krishnakumari, Balakrishna ;
Venkatakrishnan, Yanamandram B. ;
Krzywkowski, Marcin .
COMPTES RENDUS MATHEMATIQUE, 2014, 352 (05) :363-366
[8]  
Lewis J, 2010, UTILITAS MATHEMATICA, V81, P193
[9]  
Lewis JR, 2007, PHD THESIS
[10]  
Li P., 2015, DISCRETE MATH THEOR, V16, P125, DOI [10.1016/j.tcs.2015.03.012, DOI 10.1016/J.TCS.2015.03.012]