Finite-time robust control of robotic manipulator with input deadzone and time-varying disturbance compensation

被引:3
作者
Rauf, Arshad [1 ]
Zhao, Zhengen [1 ]
Khan, Awais [2 ]
Ilyas, Muhammad [3 ]
Abbasi, Waseem [4 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Nanjing 210016, Jiangsu, Peoples R China
[2] Shenzhen Univ, Coll Mechatron & Control Engn, Shenzhen, Peoples R China
[3] Baluchistan Univ Engn & Technol, Dept Biomed Engn, Khuzdar, Pakistan
[4] Muslim Youth Univ, Dept Elect Engn, Islamabad, Pakistan
关键词
Robotic manipulator; sliding mode control; finite-time control; deadzone; disturbances; uncertainties; non-singular terminal sliding mode control; SLIDING MODE CONTROL; NONLINEAR-SYSTEMS; TRACKING; DESIGN; ARMS;
D O I
10.1177/01423312221126231
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the problem of trajectory tracking for robotic manipulator with input deadzone and time-varying disturbances is investigated using a continuous non-singular terminal sliding mode control (SMC). The robotic manipulator plays a vital role in industrial as well as many other applications. However, it faces numerous problems for accurate and fast trajectory tracking response in the presence of unknown uncertainties and external disturbances, that always have adverse affects on system closed-loop performance. This paper proposes a valid control design scheme to address the aforementioned practical issue. First, a non-singular terminal sliding mode surface is designed. Then, a robust control law is developed to guarantee the finite-time converges of system states to the origin. In addition, the sign function is substituted by saturation function, which can effectively reduce the chattering driven by the high-frequency switching item in the traditional SMC method. Moreover, the Lyapunov stability criterion is used to prove the stability of the closed-loop system. The efficiency of the designed control scheme is validated with numerical simulations.
引用
收藏
页码:1140 / 1147
页数:8
相关论文
共 38 条
[1]   A Widely Adaptive Time-Delayed Control and Its Application to Robot Manipulators [J].
Baek, Jaemin ;
Kwon, Wookyong ;
Kim, Beomsu ;
Han, Soohee .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (07) :5332-5342
[2]   Continuous finite-time stabilization of the translational and rotational double integrators [J].
Bhat, SP ;
Bernstein, DS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (05) :678-682
[3]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766
[4]   Adaptive nonsingular fast terminal sliding-mode control for the tracking problem of uncertain dynamical systems [J].
Boukattaya, Mohamed ;
Mezghani, Neila ;
Damak, Tarak .
ISA TRANSACTIONS, 2018, 77 :1-19
[5]   Finite time observer-based super-twisting sliding mode control for vehicle platoons with guaranteed strong string stability [J].
Chen, Qian ;
Xu, Long ;
Zhou, Yang ;
Li, Shihua .
IET INTELLIGENT TRANSPORT SYSTEMS, 2022, 16 (12) :1726-1737
[6]  
Craig JJ., 2005, Introduction to Robotics: Mechanics and Control, V3
[7]   Sliding mode control of robotic arms with deadzone [J].
de Jesus Rubio, Jose .
IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (08) :1214-1221
[8]   A novel adaptive nonsingular terminal sliding mode controller design and its application to active front steering system [J].
Ding, Shihong ;
Liu, Lu ;
Park, Ju H. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (12) :4250-4269
[9]   Second-order sliding mode controller design subject to mismatched term [J].
Ding, Shihong ;
Li, Shihua .
AUTOMATICA, 2017, 77 :388-392
[10]   Finite element based model predictive control for active vibration suppression of a one-link flexible manipulator [J].
Dubay, Rickey ;
Hassan, Marwan ;
Li, Chunying ;
Charest, Meaghan .
ISA TRANSACTIONS, 2014, 53 (05) :1609-1619