Semiparametric Density Ratio Model for Survival Data with a Cure Fraction

被引:0
|
作者
Zhong, Weibin [1 ]
Diao, Guoqing [2 ]
机构
[1] Berkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USA
[2] George Washington Univ, Dept Biostat & Bioinformat, 950 New Hampshire Ave NW, Washington, DC 20052 USA
关键词
Cure rate model; Density ratio model; Nonparametric maximum likelihood estimation; Semiparametric inference; PROPORTIONAL HAZARDS MODEL; REGRESSION-MODEL; MIXTURE MODEL; RATES;
D O I
10.1007/s12561-022-09357-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The paper proposes a class of semiparametric transformation models for survival data with a cure fraction. Particularly, we assume a semiparametric density ratio model for the unknown proper conditional distribution function. The density ratio model is closely related to the generalized linear models and is desirable for modeling skewed survival data. We develop nonparametric likelihood-based estimation and inference procedures. Compared to some existing cure rate models, the estimation of the unknown proper baseline cumulative distribution function is more natural without imposing additional constraints. We establish the consistency and asymptotic normality of the proposed nonparametric maximum likelihood estimators. Extensive simulation studies demonstrate that the proposed methods perform well under practical settings. The proposed methods are also shown to be robust under certain model mis-specifications. We illustrate the proposed methods using two real applications.
引用
收藏
页码:217 / 241
页数:25
相关论文
共 50 条
  • [41] Large-scale survival analysis with a cure fraction
    Han, Bo
    Wang, Xiaoguang
    Sun, Liuquan
    BIOMETRICS, 2024, 80 (04)
  • [42] A presmoothing approach for estimation in the semiparametric Cox mixture cure model
    Musta, Eni
    Patilea, Valentin
    Van Keilegom, Ingrid
    BERNOULLI, 2022, 28 (04) : 2689 - 2715
  • [43] Efficient estimation for semiparametric cure models with interval-censored data
    Hu, Tao
    Xiang, Liming
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 121 : 139 - 151
  • [44] Bayesian Modeling of Survival Data in the Presence of Competing Risks with Cure Fractions and Masked Causes
    Menger, Austin
    Sheikh, Md. Tuhin
    Chen, Ming-Hui
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2024, 86 (SUPPL 1): : 199 - 227
  • [45] Semiparametric methods for center effect measures based on the ratio of survival functions
    He, Kevin
    Schaubel, Douglas E.
    LIFETIME DATA ANALYSIS, 2014, 20 (04) : 619 - 644
  • [46] A semiparametric random effects model for multivariate competing risks data
    Scheike, Thomas H.
    Sun, Yanqing
    Zhang, Mei-Jie
    Jensen, Tina Kold
    BIOMETRIKA, 2010, 97 (01) : 133 - 145
  • [47] A Bayesian discriminant analysis method under semiparametric density ratio models
    Wan, Shuwen
    Peng, Kai
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (04) : 1759 - 1766
  • [48] Nonparametric versus Parametric Estimation of the Cure Fraction Using Interval Censored Data
    Aljawadi, Bader A. I.
    Bakar, Mohd Rizam A.
    Ibrahim, Noor Akma
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (23) : 4251 - 4275
  • [49] A new survival model with surviving fraction: An application to colorectal cancer data
    Barriga, Gladys D. C.
    Cancho, Vicente G.
    Garibay, Daniel, V
    Cordeiro, Gauss M.
    Ortega, Edwin M. M.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (09) : 2665 - 2680
  • [50] Homogeneity Test for Multiple Semicontinuous Data with the Density Ratio Model
    Wang, Yufan
    Xu, Xingzhong
    MATHEMATICS, 2023, 11 (17)