Semiparametric Density Ratio Model for Survival Data with a Cure Fraction
被引:0
|
作者:
Zhong, Weibin
论文数: 0引用数: 0
h-index: 0
机构:
Berkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USABerkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USA
Zhong, Weibin
[1
]
Diao, Guoqing
论文数: 0引用数: 0
h-index: 0
机构:
George Washington Univ, Dept Biostat & Bioinformat, 950 New Hampshire Ave NW, Washington, DC 20052 USABerkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USA
Diao, Guoqing
[2
]
机构:
[1] Berkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USA
[2] George Washington Univ, Dept Biostat & Bioinformat, 950 New Hampshire Ave NW, Washington, DC 20052 USA
Cure rate model;
Density ratio model;
Nonparametric maximum likelihood estimation;
Semiparametric inference;
PROPORTIONAL HAZARDS MODEL;
REGRESSION-MODEL;
MIXTURE MODEL;
RATES;
D O I:
10.1007/s12561-022-09357-3
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The paper proposes a class of semiparametric transformation models for survival data with a cure fraction. Particularly, we assume a semiparametric density ratio model for the unknown proper conditional distribution function. The density ratio model is closely related to the generalized linear models and is desirable for modeling skewed survival data. We develop nonparametric likelihood-based estimation and inference procedures. Compared to some existing cure rate models, the estimation of the unknown proper baseline cumulative distribution function is more natural without imposing additional constraints. We establish the consistency and asymptotic normality of the proposed nonparametric maximum likelihood estimators. Extensive simulation studies demonstrate that the proposed methods perform well under practical settings. The proposed methods are also shown to be robust under certain model mis-specifications. We illustrate the proposed methods using two real applications.
机构:
Yunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Peoples R ChinaYunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Peoples R China
Han, Bo
Wang, Xiaoguang
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R ChinaYunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Peoples R China
Wang, Xiaoguang
Sun, Liuquan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, 55 Zhongguancun East Rd, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, 55 Zhongguancun East Rd, Beijing 100190, Peoples R ChinaYunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Peoples R China
机构:
Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R ChinaCapital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
Hu, Tao
Xiang, Liming
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 639798, SingaporeCapital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
机构:
Univ Putra Malaysia, Inst Math Res, Serdang, MalaysiaUniv Putra Malaysia, Inst Math Res, Serdang, Malaysia
Aljawadi, Bader A. I.
Bakar, Mohd Rizam A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Putra Malaysia, Inst Math Res, Serdang, Malaysia
Univ Putra Malaysia, Dept Math, Serdang, MalaysiaUniv Putra Malaysia, Inst Math Res, Serdang, Malaysia
Bakar, Mohd Rizam A.
Ibrahim, Noor Akma
论文数: 0引用数: 0
h-index: 0
机构:
Univ Putra Malaysia, Inst Math Res, Serdang, Malaysia
Univ Putra Malaysia, Dept Math, Serdang, MalaysiaUniv Putra Malaysia, Inst Math Res, Serdang, Malaysia