Semiparametric Density Ratio Model for Survival Data with a Cure Fraction

被引:0
|
作者
Zhong, Weibin [1 ]
Diao, Guoqing [2 ]
机构
[1] Berkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USA
[2] George Washington Univ, Dept Biostat & Bioinformat, 950 New Hampshire Ave NW, Washington, DC 20052 USA
关键词
Cure rate model; Density ratio model; Nonparametric maximum likelihood estimation; Semiparametric inference; PROPORTIONAL HAZARDS MODEL; REGRESSION-MODEL; MIXTURE MODEL; RATES;
D O I
10.1007/s12561-022-09357-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The paper proposes a class of semiparametric transformation models for survival data with a cure fraction. Particularly, we assume a semiparametric density ratio model for the unknown proper conditional distribution function. The density ratio model is closely related to the generalized linear models and is desirable for modeling skewed survival data. We develop nonparametric likelihood-based estimation and inference procedures. Compared to some existing cure rate models, the estimation of the unknown proper baseline cumulative distribution function is more natural without imposing additional constraints. We establish the consistency and asymptotic normality of the proposed nonparametric maximum likelihood estimators. Extensive simulation studies demonstrate that the proposed methods perform well under practical settings. The proposed methods are also shown to be robust under certain model mis-specifications. We illustrate the proposed methods using two real applications.
引用
收藏
页码:217 / 241
页数:25
相关论文
共 50 条
  • [31] A Semiparametric Joint Model for Longitudinal and Survival Data with Application to Hemodialysis Study
    Li, Liang
    Hu, Bo
    Greene, Tom
    BIOMETRICS, 2009, 65 (03) : 737 - 745
  • [32] A semiparametric hypothesis testing procedure for the ROC curve area under a density ratio model
    Zhang, B
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (07) : 1855 - 1876
  • [33] Estimating the causal effects in randomized trials for survival data with a cure fraction and non compliance
    Gao, Xiang
    Zheng, Ming
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (08) : 4065 - 4087
  • [34] Analysis of survival data with cure fraction and variable selection: A pseudo-observations approach
    Su, Chien-Lin
    Chiou, Sy Han
    Lin, Feng-Chang
    Platt, Robert W.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2022, 31 (11) : 2037 - 2053
  • [35] A new Bayesian model for survival data with a surviving fraction
    Chen, MH
    Ibrahim, JG
    Sinha, D
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (447) : 909 - 919
  • [36] Vertical modeling: analysis of competing risks data with a cure fraction
    Nicolaie, Mioara Alina
    Taylor, Jeremy M. G.
    Legrand, Catherine
    LIFETIME DATA ANALYSIS, 2019, 25 (01) : 1 - 25
  • [37] Bayesian semiparametric model for spatially correlated interval-censored survival data
    Pan, Chun
    Cai, Bo
    Wang, Lianming
    Lin, Xiaoyan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 74 : 198 - 208
  • [38] A bivariate regression model with cure fraction
    Fachini, Juliana B.
    Ortega, Edwin M. M.
    Cordeiro, Gauss M.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (07) : 1580 - 1595
  • [39] A survival regression with cure fraction applied to cervical cancer
    Cancho, Vicente G.
    Bedia, Elizbeth C.
    Cordeiro, Gauss M.
    Prataviera, Fabio
    Ortega, Edwin M. M.
    Santo, Ana P. J. E.
    COMPUTATIONAL STATISTICS, 2023, 38 (01) : 403 - 418
  • [40] A survival regression with cure fraction applied to cervical cancer
    Vicente G. Cancho
    Elizbeth C. Bedia
    Gauss M. Cordeiro
    Fábio Prataviera
    Edwin M. M. Ortega
    Ana P. J. E. Santo
    Computational Statistics, 2023, 38 : 403 - 418