Semiparametric Density Ratio Model for Survival Data with a Cure Fraction
被引:0
|
作者:
Zhong, Weibin
论文数: 0引用数: 0
h-index: 0
机构:
Berkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USABerkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USA
Zhong, Weibin
[1
]
Diao, Guoqing
论文数: 0引用数: 0
h-index: 0
机构:
George Washington Univ, Dept Biostat & Bioinformat, 950 New Hampshire Ave NW, Washington, DC 20052 USABerkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USA
Diao, Guoqing
[2
]
机构:
[1] Berkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USA
[2] George Washington Univ, Dept Biostat & Bioinformat, 950 New Hampshire Ave NW, Washington, DC 20052 USA
Cure rate model;
Density ratio model;
Nonparametric maximum likelihood estimation;
Semiparametric inference;
PROPORTIONAL HAZARDS MODEL;
REGRESSION-MODEL;
MIXTURE MODEL;
RATES;
D O I:
10.1007/s12561-022-09357-3
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The paper proposes a class of semiparametric transformation models for survival data with a cure fraction. Particularly, we assume a semiparametric density ratio model for the unknown proper conditional distribution function. The density ratio model is closely related to the generalized linear models and is desirable for modeling skewed survival data. We develop nonparametric likelihood-based estimation and inference procedures. Compared to some existing cure rate models, the estimation of the unknown proper baseline cumulative distribution function is more natural without imposing additional constraints. We establish the consistency and asymptotic normality of the proposed nonparametric maximum likelihood estimators. Extensive simulation studies demonstrate that the proposed methods perform well under practical settings. The proposed methods are also shown to be robust under certain model mis-specifications. We illustrate the proposed methods using two real applications.
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
City Univ Hong Kong, Dept Management Sci, Kowloon, Hong Kong, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
Wei, Wenhua
Zhou, Yong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
Zhou, Yong
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE,
2016,
44
(01):
: 58
-
81
机构:
Harvard Univ, Dept Biostat, Boston, MA 02115 USA
Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USAHarvard Univ, Dept Biostat, Boston, MA 02115 USA
Othus, Megan
Li, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Dept Biostat, Boston, MA 02115 USA
Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USAHarvard Univ, Dept Biostat, Boston, MA 02115 USA
Li, Yi
Tiwari, Ram C.
论文数: 0引用数: 0
h-index: 0
机构:
US FDA, Off Biostat, Ctr Drug Evaluat & Res, Silver Spring, MD 20993 USA
NCI, Bethesda, MD 20892 USAHarvard Univ, Dept Biostat, Boston, MA 02115 USA
机构:
Nanyang Technol Univ, Div Math Sci, Sch Phys & Math Sci, Singapore 637371, SingaporeNanyang Technol Univ, Div Math Sci, Sch Phys & Math Sci, Singapore 637371, Singapore
Ma, Xiangmei
Xiang, Liming
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Div Math Sci, Sch Phys & Math Sci, Singapore 637371, SingaporeNanyang Technol Univ, Div Math Sci, Sch Phys & Math Sci, Singapore 637371, Singapore
机构:
Dalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R ChinaDalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R China
Xie, Ping
Han, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, NCMIS, Beijing 100190, Peoples R ChinaDalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R China
Han, Bo
Wang, Xiaoguang
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R ChinaDalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R China