Semiparametric Density Ratio Model for Survival Data with a Cure Fraction

被引:0
|
作者
Zhong, Weibin [1 ]
Diao, Guoqing [2 ]
机构
[1] Berkeley Hts, Bristol Myers Squibb, Global Biometr & Data Sci, 300 Connell Dr, Connell Dr, NJ 07922 USA
[2] George Washington Univ, Dept Biostat & Bioinformat, 950 New Hampshire Ave NW, Washington, DC 20052 USA
关键词
Cure rate model; Density ratio model; Nonparametric maximum likelihood estimation; Semiparametric inference; PROPORTIONAL HAZARDS MODEL; REGRESSION-MODEL; MIXTURE MODEL; RATES;
D O I
10.1007/s12561-022-09357-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The paper proposes a class of semiparametric transformation models for survival data with a cure fraction. Particularly, we assume a semiparametric density ratio model for the unknown proper conditional distribution function. The density ratio model is closely related to the generalized linear models and is desirable for modeling skewed survival data. We develop nonparametric likelihood-based estimation and inference procedures. Compared to some existing cure rate models, the estimation of the unknown proper baseline cumulative distribution function is more natural without imposing additional constraints. We establish the consistency and asymptotic normality of the proposed nonparametric maximum likelihood estimators. Extensive simulation studies demonstrate that the proposed methods perform well under practical settings. The proposed methods are also shown to be robust under certain model mis-specifications. We illustrate the proposed methods using two real applications.
引用
收藏
页码:217 / 241
页数:25
相关论文
共 50 条
  • [21] Defective 3-parameter Gompertz model with frailty term for estimating cure fraction in survival data
    Hajizadeh, Nastaran
    Baghestani, Ahmad Reza
    Pourhoseingholi, Mohamad Amin
    Maboudi, Ali Akbar Khadem
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2023, 33 (01) : 90 - 113
  • [22] Marginal analysis of multivariate failure time data with a surviving fraction based on semiparametric transformation cure models
    Chen, Chyong-Mei
    Lu, Tai-Fang C.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (03) : 645 - 655
  • [23] Semiparametric maximum likelihood estimation for a two-sample density ratio model with right-censored data
    Wei, Wenhua
    Zhou, Yong
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2016, 44 (01): : 58 - 81
  • [24] Semiparametric methods for survival data with measurement error under additive hazards cure rate models
    Barui, Sandip
    Yi, Grace Y.
    LIFETIME DATA ANALYSIS, 2020, 26 (03) : 421 - 450
  • [25] Cure fraction model with random effects for regional variation in cancer survival
    Seppa, Karri
    Hakulinen, Timo
    Kim, Hyon-Jung
    Laara, Esa
    STATISTICS IN MEDICINE, 2010, 29 (27) : 2781 - 2793
  • [26] Semiparametric empirical likelihood confidence intervals for AUC under a density ratio model
    Wang, Suohong
    Zhang, Biao
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 70 : 101 - 115
  • [27] A Class of Semiparametric Mixture Cure Survival Models With Dependent Censoring
    Othus, Megan
    Li, Yi
    Tiwari, Ram C.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (487) : 1241 - 1250
  • [28] Testing for the Presence of a Cure Fraction in Clustered Interval-Censored Survival Data
    Ma, Xiangmei
    Xiang, Liming
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2013, 55 (02) : 173 - 190
  • [29] A class of semiparametric cure models with current status data
    Diao, Guoqing
    Yuan, Ao
    LIFETIME DATA ANALYSIS, 2019, 25 (01) : 26 - 51
  • [30] Case-cohort studies for clustered failure time data with a cure fraction
    Xie, Ping
    Han, Bo
    Wang, Xiaoguang
    STATISTICAL PAPERS, 2024, 65 (03) : 1309 - 1336