Effects of Extracellular Vesicles Derived from Human Umbilical Cord Blood Mesenchymal Stem Cells on Cell Immunity in Nonobese Mice

被引:1
|
作者
Ou, Yang [1 ]
Yang, Yang [2 ]
Wang, Yan [1 ]
Su, Heng [1 ]
Zhou, Yi-kun [1 ]
机构
[1] Kunming Univ Sci & Technol, Peoples Hosp Yunnan Prov 1, Dept Endocrinol & Metab, Kunhua Affiliated Hosp, Kunming 650032, Peoples R China
[2] Kunming Med Univ, Kunming Yanan Hosp, Dept Urol, Yanan Affiliated Hosp, Kunming 650233, Peoples R China
基金
中国国家自然科学基金;
关键词
IMMUNOMODULATORY FUNCTION; AUTOIMMUNE; EXOSOMES; DISEASE;
D O I
10.1155/2024/4775285
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Autoimmune responses are the most important pathogenic mechanisms underlying type 1 diabetes (T1D). Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) have immunomodulatory effects. In this study, we investigated whether EVs derived from human umbilical cord MSCs (HucMSC-EVs) have treatment effects on nonobese diabetic (NOD) mice as model of T1D. HucMSC-EVs were isolated from human umbilical cord MSCs and characterized. NOD mice (aged 4 weeks) were administered with HucMSC-EVs or the same volume of phosphate-buffered saline (PBS) via caudal vein injection twice per week. After 8 weeks of treatment, blood, spleen, and pancreatic samples were collected. Mouse blood glucose levels and body weights were measured during treatment, and insulin concentration and inflammatory cytokine levels were analyzed by enzyme-linked immunosorbent assay (ELISA). Hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) staining were used to evaluate pathological changes in mouse islets. T lymphocyte subsets were evaluated by flow cytometry, while quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) analyses were used to detect the expression of transcription factor and inflammatory cytokines. Our data indicated that HucMSC-EVs treatment reduced blood glucose levels and increased insulin concentration in NOD mice. Levels of interleukin-2 (IL-2), IL-4, and IL-10 were significantly increased and those of IL-1 beta and interferon-gamma (IFN-gamma) significantly decreased in the HucMSC-EVs group. The positive ratio of CD4+ T lymphocyte subsets decreased after intravenous injection of HucMSC-EVs, in which the proportion of Th2 cells increased and that of Th1 decreased. GATA-3 and IL-2, IL-4 and IL-10 expression levels were upregulated in spleen on treatment with HucMSC-EVs, whereas those of T-bet and IFN-gamma were downregulated. In addition, more inflammatory cell infiltration was detected in the pancreas of control group mice than those treated with HucMSC-EVs. IHC staining showed that Fas/FasL expression and distribution in control group pancreas were higher than those in the HucMSC-EVs group. Together, our findings indicate that HucMSC-EVs have potential to prevent islet injury via T cell immune responses by adjusting the Th1/Th2 ratio to regulate secretion of inflammatory factors.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Neuroprotective Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells From Different Donors on Spinal Cord Injury in Mice
    Zhu, Xu
    Wang, Zhen
    Sun, Yi Eve
    Liu, Yuchen
    Wu, Zhourui
    Ma, Bei
    Cheng, Liming
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2022, 15
  • [32] Human umbilical cord blood derived mesenchymal stem cells with inherent neurogenic potential
    Divya, M. S.
    George, Roshin Elizabeth
    Elizabeth, K. E.
    James, Jackson
    INTERNATIONAL JOURNAL OF DEVELOPMENTAL NEUROSCIENCE, 2012, 30 (08) : 650 - 651
  • [33] Extracellular vesicles derived from CD73 modified human umbilical cord mesenchymal stem cells ameliorate inflammation after spinal cord injury
    Zhai, Xiao
    Chen, Kai
    Yang, Huan
    Li, Bo
    Zhou, Tianjunke
    Wang, Haojue
    Zhou, Huipeng
    Chen, Shaofeng
    Zhou, Xiaoyi
    Wei, Xiaozhao
    Bai, Yushu
    Li, Ming
    JOURNAL OF NANOBIOTECHNOLOGY, 2021, 19 (01)
  • [34] Extracellular vesicles derived from CD73 modified human umbilical cord mesenchymal stem cells ameliorate inflammation after spinal cord injury
    Xiao Zhai
    Kai Chen
    Huan Yang
    Bo Li
    Tianjunke Zhou
    Haojue Wang
    Huipeng Zhou
    Shaofeng Chen
    Xiaoyi Zhou
    Xiaozhao Wei
    Yushu Bai
    Ming Li
    Journal of Nanobiotechnology, 19
  • [35] Human umbilical cord blood-derived mesenchymal stem cells and their effect on gliomas
    Shankar, S. K.
    NEUROLOGY INDIA, 2011, 59 (02) : 226 - 228
  • [36] NEONATAL DERIVED MESENCHYMAL STEM CELLS CAN BE ISOLATED FROM HUMAN UMBILICAL CORD WHARTON'S JELLY BUT NOT FROM HUMAN UMBILICAL CORD BLOOD
    Singh, T. Paras
    Sherpa, M. L.
    Pradhan, Anup
    Singh, T. A.
    JOURNAL OF EVOLUTION OF MEDICAL AND DENTAL SCIENCES-JEMDS, 2019, 8 (12): : 849 - 854
  • [37] Extracellular matrix gel is necessary for in vitro cultivation of insulin producing cells from human umbilical cord blood derived mesenchymal stem cells
    GAO FengWU DequanHU Yanhua and JIN Guangxin Department of General Surgerythe Second Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiang China
    中华医学杂志(英文版), 2008, (09) : 811 - 818
  • [38] Extracellular matrix gel is necessary for in vitro cultivation of insulin producing cells from human umbilical cord blood derived mesenchymal stem cells
    Gao Feng
    Wu De-quan
    Hu Yan-hua
    Jin Guang-xin
    CHINESE MEDICAL JOURNAL, 2008, 121 (09) : 811 - 818
  • [39] Therapeutic Potentials of Mesenchymal Stem Cells Derived from Human Umbilical Cord
    Fan, Cun-Gang
    Zhang, Qing-jun
    Zhou, Jing-ru
    STEM CELL REVIEWS AND REPORTS, 2011, 7 (01) : 195 - 207
  • [40] Therapeutic Potentials of Mesenchymal Stem Cells Derived from Human Umbilical Cord
    Cun-Gang Fan
    Qing-jun Zhang
    Jing-ru Zhou
    Stem Cell Reviews and Reports, 2011, 7 : 195 - 207