Improving structure-based protein-ligand affinity prediction by graph representation learning and ensemble learning

被引:6
|
作者
Guo, Jia [1 ,2 ]
机构
[1] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Chongqing Sch, Chongqing, Peoples R China
来源
PLOS ONE | 2024年 / 19卷 / 01期
关键词
BINDING-AFFINITY; SCORING FUNCTION; NEURAL-NETWORK; SIMILARITY; DOCKING;
D O I
10.1371/journal.pone.0296676
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Predicting protein-ligand binding affinity presents a viable solution for accelerating the discovery of new lead compounds. The recent widespread application of machine learning approaches, especially graph neural networks, has brought new advancements in this field. However, some existing structure-based methods treat protein macromolecules and ligand small molecules in the same way and ignore the data heterogeneity, potentially leading to incomplete exploration of the biochemical information of ligands. In this work, we propose LGN, a graph neural network-based fusion model with extra ligand feature extraction to effectively capture local features and global features within the protein-ligand complex, and make use of interaction fingerprints. By combining the ligand-based features and interaction fingerprints, LGN achieves Pearson correlation coefficients of up to 0.842 on the PDBbind 2016 core set, compared to 0.807 when using the features of complex graphs alone. Finally, we verify the rationalization and generalization of our model through comprehensive experiments. We also compare our model with state-of-the-art baseline methods, which validates the superiority of our model. To reduce the impact of data similarity, we increase the robustness of the model by incorporating ensemble learning.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Structure-based, deep-learning models for protein-ligand binding affinity prediction
    Debby D. Wang
    Wenhui Wu
    Ran Wang
    Journal of Cheminformatics, 16
  • [2] Structure-based, deep-learning models for protein-ligand binding affinity prediction
    Wang, Debby D.
    Wu, Wenhui
    Wang, Ran
    JOURNAL OF CHEMINFORMATICS, 2024, 16 (01)
  • [3] Machine Learning for Sequence and Structure-Based Protein-Ligand Interaction Prediction
    Zhang, Yunjiang
    Li, Shuyuan
    Meng, Kong
    Sun, Shaorui
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (05) : 1456 - 1472
  • [4] Scoring Functions for Protein-Ligand Binding Affinity Prediction Using Structure-based Deep Learning: A Review
    Meli, Rocco
    Morris, Garrett M.
    Biggin, Philip C.
    FRONTIERS IN BIOINFORMATICS, 2022, 2
  • [5] PocketAnchor: Learning structure-based pocket representations for protein-ligand interaction prediction
    Li, Shuya
    Tian, Tingzhong
    Zhang, Ziting
    Zou, Ziheng
    Zhao, Dan
    Zeng, Jianyang
    CELL SYSTEMS, 2023, 14 (08) : 692 - +
  • [6] Correction to "Machine Learning for Sequence and Structure-Based Protein-Ligand Interaction Prediction"
    Zhang, Yunjiang
    Li, Shuyuan
    Meng, Kong
    Sun, Shaorui
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (19) : 7826 - 7826
  • [7] Structure-based protein-ligand interaction fingerprints for binding affinity prediction
    Wang, Debby D.
    Chan, Moon-Tong
    Yan, Hong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 6291 - 6300
  • [8] Protein-Ligand Binding Affinity Prediction Based on Deep Learning
    Lu, Yaoyao
    Liu, Junkai
    Jiang, Tengsheng
    Guan, Shixuan
    Wu, Hongjie
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2022, PT II, 2022, 13394 : 310 - 316
  • [9] ERL-ProLiGraph: Enhanced representation learning on protein-ligand graph structured data for binding affinity prediction
    Paendong, Gloria Geine
    Njimbouom, Soualihou Ngnamsie
    Zonyfar, Candra
    Kim, Jeong-Dong
    MOLECULAR INFORMATICS, 2024, 43 (12)
  • [10] Improving the prediction of protein-ligand binding affinity using deep learning models
    Rezaei, Mohammad
    Li, Yanjun
    Li, Xiaolin
    Li, Chenglong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257