Protein S-nitrosylation in plants under biotic stress

被引:1
|
作者
Machchhu, Farhin [1 ]
Wany, Aakanksha [1 ]
机构
[1] PP Savani Univ, Sch Sci, Surat 394125, India
关键词
Nitric oxide; Hypersensitive response; Reactive oxygen species; Programmed cell death; NITRIC-OXIDE PRODUCTION; ARABIDOPSIS-THALIANA; NITRATE REDUCTASE; OXIDATIVE BURST; GENE INDUCTION; DEFENSE; DENITROSYLATION; RESPONSES; TOBACCO; SIGNAL;
D O I
10.1007/s40626-023-00289-x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Nitric oxide (NO) is a signaling molecule which controls a variety of biological functions and plays important roles in plant physiology. NO is involved in the majority of plant responses to biotic and abiotic stress, either indirectly through gene activation or interaction with hormones and reactive oxygen species (ROS), or directly as a result of altering enzyme activities primarily through S-nitrosylation. Protein S-nitrosylation is a redox-based post-translational modification that involves covalent attaching of a NO molecule to a reactive cysteine thiol of a target protein. This modification performs many significant physiological functions of NO. However, S-nitrosylation is a conserved evolutionary mechanism that regulates various facts of cellular signaling such as hormone signaling and responses to pathogens. It is challenging to find S-nitrosylated proteins since the S-NO bond is labile and therefore, methods to identify these modified proteins becomes difficult under different pathological conditions. Biotin switch method is well known in identifying S-nitrosylated proteins. S-nitrosylation of proteins plays important role in regulating different cellular processes like signal transduction, autophagy, SUMOylation and also impacts pathogen's virulence. However, much about S-nitrosylation is known due to abiotic stress. This short review highlights S-nitrosylation in response to biotic disturbances.
引用
收藏
页码:331 / 339
页数:9
相关论文
共 50 条
  • [1] Protein S-nitrosylation in plants under biotic stress
    Farhin Machchhu
    Aakanksha Wany
    Theoretical and Experimental Plant Physiology, 2023, 35 : 331 - 339
  • [2] Protein S-nitrosylation in plants under biotic stress
    Machchhu, Farhin
    Wany, Aakanksha
    THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY, 2023,
  • [3] Protein S-nitrosylation in plants under abiotic stress: an overview
    Romero-Puertas, Maria C.
    Rodriguez-Serrano, Maria
    Sandalio, Luisa M.
    FRONTIERS IN PLANT SCIENCE, 2013, 4
  • [4] Protein S-nitrosylation under abiotic stress: Role and mechanism
    Wang, Tong
    Hou, Xuemei
    Wei, Lijuan
    Deng, Yuzheng
    Zhao, Zongxi
    Liang, Chen
    Liao, Weibiao
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 207
  • [5] Phytohormonal Regulation Through Protein S-Nitrosylation Under Stress
    Pande, Anjali
    Mun, Bong Gyu
    Rahim, Waqas
    Khan, Murtaza
    Lee, Da Sol
    Lee, Geun Mo
    Al Azzawi, Tiba Nazar Ibrahim
    Hussain, Adil
    Kim, Chang Kil
    Yun, Byung Wook
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [6] Protein S-nitrosylation: What's going on in plants?
    Astier, Jeremy
    Kulik, Anna
    Koen, Emmanuel
    Besson-Bard, Angelique
    Bourque, Stephane
    Jeandroz, Sylvain
    Lamotte, Olivier
    Wendehenne, David
    FREE RADICAL BIOLOGY AND MEDICINE, 2012, 53 (05) : 1101 - 1110
  • [7] Protein S-Nitrosylation in plants: Current progresses and challenges
    Jian Feng
    Lichao Chen
    Jianru Zuo
    JournalofIntegrativePlantBiology, 2019, 61 (12) : 1206 - 1223
  • [8] Protein S-Nitrosylation in plants: Current progresses and challenges
    Feng, Jian
    Chen, Lichao
    Zuo, Jianru
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2019, 61 (12) : 1206 - 1223
  • [9] Protein S-nitrosylation in programmed cell death in plants
    Dengjing Huang
    Jianqiang Huo
    Jing Zhang
    Chunlei Wang
    Bo Wang
    Hua Fang
    Weibiao Liao
    Cellular and Molecular Life Sciences, 2019, 76 : 1877 - 1887
  • [10] Protein S-Nitrosylation in Plants: Photorespiratory Metabolism and NO Signaling
    Gupta, Kapuganti J.
    SCIENCE SIGNALING, 2011, 4 (154)