Triangular Structures on Flat Lie Algebras

被引:0
作者
Bahayou, Amine [1 ]
机构
[1] Kasdi Merbah Univ, Dept Math, Ouargla, Algeria
关键词
Lie bialgebra; Poisson-Lie group; Yang-Baxter equation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a large class of exact Lie bialgebras arising from noncommutative deformations of Poisson-Lie groups endowed with a left invariant Riemannian metric. We call these structures triangular metaflat Lie bialgebras. We show that given the metaflatness geometrical condition, these exact bialgebra structures arise necessarily from a solution of the classical Yang-Baxter equation. Moreover, the dual Lie bialgebra is also metaflat constituting an important kind of symmetry.
引用
收藏
页码:875 / 886
页数:12
相关论文
共 9 条
  • [1] Bahayou A, 2009, J LIE THEORY, V19, P439
  • [2] Hyper-Kahler quotients of solvable Lie groups
    Barberis, ML
    Dotti, I
    Fino, A
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (04) : 691 - 711
  • [3] Crainic Marius, 2021, Graduate Studies in Mathematics, V217
  • [4] Noncommutative rigidity
    Hawkins, E
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 246 (02) : 211 - 235
  • [5] Hawkins E, 2007, J DIFFER GEOM, V77, P385
  • [6] Kosmann-Schwarzbach Y., 1997, Integrability of Nonlinear Systems. Proceedings of the CIMPA School, P104
  • [7] LU JH, 1990, J DIFFER GEOM, V31, P501
  • [8] CURVATURES OF LEFT INVARIANT METRICS ON LIE GROUPS
    MILNOR, J
    [J]. ADVANCES IN MATHEMATICS, 1976, 21 (03) : 293 - 329
  • [9] Vaisman I, 1994, PROGR MATH, V118