State of charge estimation for lithium-ion battery based on adaptive extended Kalman filter with improved residual covariance matrix estimator

被引:25
|
作者
Zhang, Xugang [1 ]
Duan, Linchao [1 ]
Gong, Qingshan [2 ]
Wang, Yan [3 ]
Song, Huawei [4 ]
机构
[1] Wuhan Univ Sci & Technol, Key Lab Met Equipment & Control Technol, Minist Educ, Wuhan 430081, Peoples R China
[2] Hubei Univ Automot Technol, Coll Mech Engn, Shiyan 442002, Peoples R China
[3] Univ Brighton, Dept Comp Engn & Math, Brighton BN2 4GJ, England
[4] GEM Co Ltd, Shenzhen 518101, Peoples R China
关键词
Lithium-ion battery; State of charge; Parameter identification; Residual covariance matrix; Improved adaptive extended Kalman filter; OF-CHARGE; PACK; SOC;
D O I
10.1016/j.jpowsour.2023.233758
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The accurate estimation of the state of charge (SOC) in lithium-ion batteries plays a pivotal role in battery management systems. This paper proposes an improved adaptive extended Kalman filter (IAEKF) algorithm for more precise SOC estimation. Initially, a novel characteristic parameter is introduced to assess the suitability of the forgetting factor in the adaptive forgetting factor recursive least squares (AFFRLS) algorithm. This evaluation aims to improve the accuracy of recognizing the parameters of the battery model. Additionally, an even function with adjustable parameters is constructed to solve the appropriate value for the forgetting factor. Subsequently, the correlation coefficients of the residual series at different moments are approximated by mathematical transformations that link the inner products of the column vectors in the constructed residual matrix to the calculation of the correlation coefficients. By comparing it with optimized thresholds using particle swarm optimization, one can adjust the sliding window length to enhance the estimation accuracy of IAEKF. The experimental results confirm that IAEKF achieves superior estimation accuracy and robustness compared to other AEKF algorithms, and the accuracy of AFFRLS parameter identification is higher than that of recursive least squares, thereby substantiating the effectiveness of the proposed algorithms.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator
    Sun, Daoming
    Yu, Xiaoli
    Wang, Chongming
    Zhang, Cheng
    Huang, Rui
    Zhou, Quan
    Amietszajew, Taz
    Bhagat, Rohit
    ENERGY, 2021, 214
  • [2] State of charge estimation of lithium-ion battery based on extended Kalman filter and unscented Kalman filter techniques
    Priya, Rajbala Purnima
    Sanjay, R.
    Sakile, Rajakumar
    ENERGY STORAGE, 2023, 5 (03)
  • [3] Co-estimation for capacity and state of charge for lithium-ion batteries using improved adaptive extended Kalman filter
    Nian, Peng
    Shuzhi, Zhang
    Xiongwen, Zhang
    JOURNAL OF ENERGY STORAGE, 2021, 40
  • [4] State of charge estimation of lithium-ion battery based on extended Kalman filter algorithm
    Xie, Jiamiao
    Wei, Xingyu
    Bo, Xiqiao
    Zhang, Peng
    Chen, Pengyun
    Hao, Wenqian
    Yuan, Meini
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [5] State of Charge Estimation for Lithium-Ion Battery Based on Improved Cubature Kalman Filter Algorithm
    Li, Guochun
    Liu, Chang
    Wang, Enlong
    Wang, Limei
    AUTOMOTIVE INNOVATION, 2021, 4 (02) : 189 - 200
  • [6] Lithium-ion battery SOC estimation based on an improved adaptive extended Kalman filter
    Wang, Yunqiu
    Li, Lei
    Ding, Quansen
    Liu, Jiale
    Chen, Pengwei
    PROCEEDINGS OF THE 2021 IEEE 16TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2021), 2021, : 417 - 421
  • [7] State of Charge Estimation of Lithium-Ion Battery Based on Improved Adaptive Unscented Kalman Filter
    Xing, Jie
    Wu, Peng
    SUSTAINABILITY, 2021, 13 (09)
  • [8] State of charge estimation of Lithium-ion battery using Extended Kalman Filter based on a comprehensive model
    Li, Hao
    Liu, Sheng Yong
    Yu, Yue
    FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE IV, PTS 1-5, 2014, 496-500 : 999 - 1002
  • [9] Multi-interest adaptive unscented Kalman filter based on improved matrix decomposition methods for lithium-ion battery state of charge estimation
    Wang, Sijing
    Huang, Pan
    Lian, Cheng
    Liu, Honglai
    JOURNAL OF POWER SOURCES, 2024, 606
  • [10] An Adaptive State of Charge Estimation Method of Lithium-ion Battery Based on Residual Constraint Fading Factor Unscented Kalman Filter
    Feng, Juqiang
    Cai, Feng
    Yang, Jing
    Wang, Shunli
    Huang, Kaifeng
    IEEE ACCESS, 2022, 10 : 44549 - 44563