Machine Learning Algorithms for Predicting the Water Quality Index

被引:8
作者
Hussein, Enas E. [1 ]
Baloch, Muhammad Yousuf Jat [2 ]
Nigar, Anam [3 ]
Abualkhair, Hussain F. [4 ]
Aldawood, Faisal Khaled [5 ]
Tageldin, Elsayed [6 ]
机构
[1] Natl Water Res Ctr, Shubra El Kheima 13411, Egypt
[2] Jilin Univ, Coll New Energy & Environm, Changchun 130021, Peoples R China
[3] Changchun Univ Sci & Technol, Sch Elect & Informat Engn, Changchun 130022, Peoples R China
[4] Taif Univ, Dept Mech Engn, Coll Engn, POB 11099, Taif 21944, Saudi Arabia
[5] Univ Bisha, Coll Engn, Dept Mech Engn, POB 001, Bisha 67714, Saudi Arabia
[6] Future Univ Egypt, Fac Engn & Technol, New Cairo 11835, Egypt
关键词
groundwater; water quality index; classification learners; support vector machine; PHYSICOCHEMICAL PARAMETERS; RISK-ASSESSMENT; ARSENIC LEVELS; HEALTH-RISK; GROUNDWATER; DRINKING; SEDIMENT; PAKISTAN; SINDH; GIS;
D O I
10.3390/w15203540
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Groundwater is one of the water resources used to preserve natural water sources for drinking, irrigation, and several other purposes, especially in industrial applications. Human activities related to industry and agriculture result in groundwater contamination. Therefore, investigating water quality is essential for drinking and irrigation purposes. In this work, the water quality index (WQI) was used to identify the suitability of water for drinking and irrigation. However, generating an accurate WQI requires much time, as errors may be made during the sub-index calculations. Hence, an artificial intelligence (AI) prediction model was built to reduce both time and errors. Eighty data samples were collected from Sakrand, a city in the province of Sindh, to investigate the area's WQI. The classification learners were used with raw data samples and the normalized data to select the best classifier among the following decision trees: support vector machine (SVM), k-nearest neighbors (K-NN), ensemble tree (ET), and discrimination analysis (DA). These were included in the classification learner tool in MATLAB. The results revealed that SVM was the best raw and normalized data classifier. The prediction accuracy levels for the training data were 90.8% and 89.2% for the raw and normalized data, respectively. Meanwhile, the prediction accuracy levels for the testing data were 86.67 and 93.33% for the raw and normalized data, respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] River water quality index prediction and uncertainty analysis: A comparative study of machine learning models
    Asadollah, Seyed Babak Haji Seyed
    Sharafati, Ahmad
    Motta, Davide
    Yaseen, Zaher Mundher
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (01):
  • [22] Predicting the Air Quality Using Machine Learning Algorithms: A Comparative Study
    Goel, Neetika
    Kumari, Ritika
    Bansal, Poonam
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 1, SMARTCOM 2024, 2024, 945 : 137 - 147
  • [23] A novel approach for estimating and predicting uncertainty in water quality index model using machine learning approaches
    Uddin, Md Galal
    Nash, Stephen
    Rahman, Azizur
    Olbert, Agnieszka I.
    WATER RESEARCH, 2023, 229
  • [24] Evaluation of water quality based on a machine learning algorithm and water quality index for the Ebinur Lake Watershed, China
    Wang, Xiaoping
    Zhang, Fei
    Ding, Jianli
    SCIENTIFIC REPORTS, 2017, 7
  • [25] Sea Water Quality Estimation Using Machine Learning Algorithms
    Oh, Haeng Yeol
    Jeong, Myeong-Hun
    Jeon, Seung Bae
    Lee, Tae Young
    Kim, Gun
    Youm, Minkyo
    JOURNAL OF COASTAL RESEARCH, 2021, : 424 - 428
  • [26] Predicting Aquaculture Water Quality Using Machine Learning Approaches
    Li, Tingting
    Lu, Jian
    Wu, Jun
    Zhang, Zhenhua
    Chen, Liwei
    WATER, 2022, 14 (18)
  • [27] Predicting methane solubility in water and seawater by machine learning algorithms: Application to methane transport modeling
    Taherdangkoo, Reza
    Liu, Quan
    Xing, Yixuan
    Yang, Huichen
    Viet Cao
    Sauter, Martin
    Butscher, Christoph
    JOURNAL OF CONTAMINANT HYDROLOGY, 2021, 242
  • [28] Identifying the Most Discriminative Parameter for Water Quality Prediction Using Machine Learning Algorithms
    Chatterjee, Tapan
    Gogoi, Usha Rani
    Samanta, Animesh
    Chatterjee, Ayan
    Singh, Mritunjay Kumar
    Pasupuleti, Srinivas
    WATER, 2024, 16 (03)
  • [29] Evaluation of Water Quality Index for Drinking Water
    Damo, Robert
    Icka, Pirro
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2013, 22 (04): : 1045 - 1051
  • [30] Advanced Machine Learning and Water Quality Index (WQI) Assessment: Evaluating Groundwater Quality at the Yopurga Landfill
    Zheng, Hongmei
    Hou, Shiwei
    Liu, Jing
    Xiong, Yanna
    Wang, Yuxin
    WATER, 2024, 16 (12)