Machine Learning Algorithms for Predicting the Water Quality Index

被引:8
|
作者
Hussein, Enas E. [1 ]
Baloch, Muhammad Yousuf Jat [2 ]
Nigar, Anam [3 ]
Abualkhair, Hussain F. [4 ]
Aldawood, Faisal Khaled [5 ]
Tageldin, Elsayed [6 ]
机构
[1] Natl Water Res Ctr, Shubra El Kheima 13411, Egypt
[2] Jilin Univ, Coll New Energy & Environm, Changchun 130021, Peoples R China
[3] Changchun Univ Sci & Technol, Sch Elect & Informat Engn, Changchun 130022, Peoples R China
[4] Taif Univ, Dept Mech Engn, Coll Engn, POB 11099, Taif 21944, Saudi Arabia
[5] Univ Bisha, Coll Engn, Dept Mech Engn, POB 001, Bisha 67714, Saudi Arabia
[6] Future Univ Egypt, Fac Engn & Technol, New Cairo 11835, Egypt
关键词
groundwater; water quality index; classification learners; support vector machine; PHYSICOCHEMICAL PARAMETERS; RISK-ASSESSMENT; ARSENIC LEVELS; HEALTH-RISK; GROUNDWATER; DRINKING; SEDIMENT; PAKISTAN; SINDH; GIS;
D O I
10.3390/w15203540
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Groundwater is one of the water resources used to preserve natural water sources for drinking, irrigation, and several other purposes, especially in industrial applications. Human activities related to industry and agriculture result in groundwater contamination. Therefore, investigating water quality is essential for drinking and irrigation purposes. In this work, the water quality index (WQI) was used to identify the suitability of water for drinking and irrigation. However, generating an accurate WQI requires much time, as errors may be made during the sub-index calculations. Hence, an artificial intelligence (AI) prediction model was built to reduce both time and errors. Eighty data samples were collected from Sakrand, a city in the province of Sindh, to investigate the area's WQI. The classification learners were used with raw data samples and the normalized data to select the best classifier among the following decision trees: support vector machine (SVM), k-nearest neighbors (K-NN), ensemble tree (ET), and discrimination analysis (DA). These were included in the classification learner tool in MATLAB. The results revealed that SVM was the best raw and normalized data classifier. The prediction accuracy levels for the training data were 90.8% and 89.2% for the raw and normalized data, respectively. Meanwhile, the prediction accuracy levels for the testing data were 86.67 and 93.33% for the raw and normalized data, respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Using Machine Learning Models for Predicting the Water Quality Index in the La Buong River, Vietnam
    Khoi, Dao Nguyen
    Quan, Nguyen Trong
    Linh, Do Quang
    Nhi, Pham Thi Thao
    Thuy, Nguyen Thi Diem
    WATER, 2022, 14 (10)
  • [22] Machine learning framework for predicting water quality classification
    Sangwan, Vinita
    Bhardwaj, Rashmi
    WATER PRACTICE AND TECHNOLOGY, 2024, 19 (11) : 4499 - 4521
  • [23] Predicting a water infrastructure leakage index via machine learning
    Kiziloz, Burak
    Sisman, Eyup
    Oruc, Halil Nurullah
    UTILITIES POLICY, 2022, 75
  • [24] Assessing and predicting water quality index with key water parameters by machine learning models in coastal cities, China
    Xu, Jing
    Mo, Yuming
    Zhu, Senlin
    Wu, Jinran
    Jin, Guangqiu
    Wang, You-Gan
    Ji, Qingfeng
    Li, Ling
    HELIYON, 2024, 10 (13)
  • [25] Predicting lake water quality index with sensitivity-uncertainty analysis using deep learning algorithms
    Talukdar, Swapan
    Shahfahad, Shakeel
    Ahmed, Shakeel
    Naikoo, Mohd Waseem
    Rahman, Atiqur
    Mallik, Santanu
    Ningthoujam, Sudhakar
    Bera, Somnath
    Ramana, G. V.
    JOURNAL OF CLEANER PRODUCTION, 2023, 406
  • [26] Predicting the Air Quality Using Machine Learning Algorithms: A Comparative Study
    Goel, Neetika
    Kumari, Ritika
    Bansal, Poonam
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 1, SMARTCOM 2024, 2024, 945 : 137 - 147
  • [27] Predicting Water Safety: Harnessing the Power of Simple Machine Learning Algorithms
    Dumbre, Dipali
    Devi, Seeta
    Chavan, Ranjana
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [28] Comparative analysis of machine learning models for predicting water quality index in Dhaka's rivers of Bangladesh
    Nishat, Mosaraf Hosan
    Khan, Md. Habibur Rahman Bejoy
    Ahmed, Tahmeed
    Hossain, Syed Nahin
    Ahsan, Amimul
    El-Sergany, M. M.
    Shafiquzzaman, Md.
    Imteaz, Monzur Alam
    Alresheedi, Mohammad T.
    ENVIRONMENTAL SCIENCES EUROPE, 2025, 37 (01)
  • [29] A novel approach for estimating and predicting uncertainty in water quality index model using machine learning approaches
    Uddin, Md Galal
    Nash, Stephen
    Rahman, Azizur
    Olbert, Agnieszka I.
    WATER RESEARCH, 2023, 229
  • [30] Machine learning models for predicting water quality index: optimization and performance analysis for El Moghra, Egypt
    Elshaarawy, Mohamed Kamel
    Eltarabily, Mohamed Galal
    Water Supply, 2024, 24 (09) : 3269 - 3294