Keyframe-aided resolution enhancement network for dynamic super-resolution structured illumination microscopy

被引:2
作者
Tang, Yujun [1 ]
Wen, Gang [2 ]
Liang, Yong [2 ]
Wang, Linbo [2 ]
Zhang, Jie [2 ]
LI, Hui [1 ,2 ]
机构
[1] Univ Sci & Technol China, Sch Biomed Engn Suzhou, Div Life Sci & Med, Suzhou 230041, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Jiangsu Key Lab Med Opt, Suzhou 215163, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
FIELD FLUORESCENCE MICROSCOPY; RECONSTRUCTION; IMAGES; FRAME;
D O I
10.1364/OL.491899
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Deep learning has been used to reconstruct super-resolution structured illumination microscopy (SR-SIM) images with wide-field or fewer raw images, effectively reducing pho-tobleaching and phototoxicity. However, the dependability of new structures or sample observation is still questioned using these methods. Here, we propose a dynamic SIM imaging strategy: the full raw images are recorded at the beginning to reconstruct the SR image as a keyframe, then only wide-field images are recorded. A deep-learning-based reconstruction algorithm, named KFA-RET, is developed to reconstruct the rest of the SR images for the whole dynamic process. With the structure at the keyframe as a refer-ence and the temporal continuity of biological structures, KFA-RET greatly enhances the quality of reconstructed SR images while reducing photobleaching and phototoxicity. Moreover, KFA-RET has a strong transfer capability for observing new structures that were not included during net-work training. (c) 2023 Optica Publishing Group
引用
收藏
页码:2949 / 2952
页数:4
相关论文
共 33 条
[1]   Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes [J].
Chen, Jiji ;
Sasaki, Hideki ;
Lai, Hoyin ;
Su, Yijun ;
Liu, Jiamin ;
Wu, Yicong ;
Zhovmer, Alexander ;
Combs, Christian A. ;
Rey-Suarez, Ivan ;
Chang, Hung-Yu ;
Huang, Chi Chou ;
Li, Xuesong ;
Guo, Min ;
Nizambad, Srineil ;
Upadhyaya, Arpita ;
Lee, Shih-Jong J. ;
Lucas, Luciano A. G. ;
Shroff, Hari .
NATURE METHODS, 2021, 18 (06) :678-+
[2]   ML-SIM: universal reconstruction of structured illumination microscopy images using transfer learning [J].
Christensen, Charles N. ;
Ward, Edward N. ;
Lu, Meng ;
Lio, Pietro ;
Kaminski, Clemens F. .
BIOMEDICAL OPTICS EXPRESS, 2021, 12 (05) :2720-2733
[3]   Parameter-free image resolution estimation based on decorrelation analysis [J].
Descloux, A. ;
Grussmayer, K. S. ;
Radenovic, A. .
NATURE METHODS, 2019, 16 (09) :918-+
[4]   DeepImageJ: A user-friendly environment to run deep learning models in ImageJ [J].
Gomez-de-Mariscal, Estibaliz ;
Garcia-Lopez-de-Haro, Carlos ;
Ouyang, Wei ;
Donati, Laurene ;
Lundberg, Emma ;
Unser, Michael ;
Munoz-Barrutia, Arrate ;
Sage, Daniel .
NATURE METHODS, 2021, 18 (10) :1192-+
[5]   Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination [J].
Gustafsson, Mats G. L. ;
Shao, Lin ;
Carlton, Peter M. ;
Wang, C. J. Rachel ;
Golubovskaya, Inna N. ;
Cande, W. Zacheus ;
Agard, David A. ;
Sedat, John W. .
BIOPHYSICAL JOURNAL, 2008, 94 (12) :4957-4970
[6]   Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination [J].
Gustafsson, MGL ;
Agard, DA ;
Sedat, JW .
THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION PROCESSING VII, 2000, 3919 :141-150
[7]   Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating [J].
Heintzmann, R ;
Cremer, C .
OPTICAL BIOPSIES AND MICROSCOPIC TECHNIQUES III, PROCEEDINGS OF, 1999, 3568 :185-196
[8]   Super-Resolution Structured Illumination Microscopy [J].
Heintzmann, Rainer ;
Huser, Thomas .
CHEMICAL REVIEWS, 2017, 117 (23) :13890-13908
[9]   Recurrent neural network-based volumetric fluorescence microscopy [J].
Huang, Luzhe ;
Chen, Hanlong ;
Luo, Yilin ;
Rivenson, Yair ;
Ozcan, Aydogan .
LIGHT-SCIENCE & APPLICATIONS, 2021, 10 (01)
[10]   Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy [J].
Huang, Xiaoshuai ;
Fan, Junchao ;
Li, Liuju ;
Liu, Haosen ;
Wu, Runlong ;
Wu, Yi ;
Wei, Lisi ;
Mao, Heng ;
Lal, Amit ;
Xi, Peng ;
Tang, Liqiang ;
Zhang, Yunfeng ;
Liu, Yanmei ;
Tan, Shan ;
Chen, Liangyi .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :451-+