Fabrication of core-shell Co@HCN@PANI composite material with enhanced electromagnetic wave absorption

被引:9
|
作者
Meng, Liang [1 ,2 ]
Li, Junjie [1 ]
Li, Xilin [1 ]
Wang, Zhenjun [3 ]
Zhou, Wen [4 ]
机构
[1] Shanghai Normal Univ, Sch Environm & Geog Sci, Shanghai 200234, Peoples R China
[2] Zhejiang Univ, Key Lab Environm Remediat & Ecol Hlth, Minist Educ, Hangzhou 310058, Peoples R China
[3] Univ Shanghai Sci & Technol, Coll Mech Engn, Shanghai 200093, Peoples R China
[4] South China Univ Technol, Affiliated Hosp 6, Sch Med, Cent Lab, Foshan, Peoples R China
基金
中国国家自然科学基金;
关键词
Polyaniline; Core-shell; Effective absorption bandwidth; Heterogeneous interfaces; EFFICIENT ELECTROCATALYSTS; CARBON; NANOPARTICLES; MICROSPHERES; POLARIZATION; SPHERES; FIBER;
D O I
10.1016/j.jallcom.2023.171528
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A core-shell Co@ hollow carbon nanospheres @ polyaniline nanocomposite for EMW absorption was constructed via soft template, switching liquid phase transport and in-situ polymerization method. Polarization at the interface of Co, HCN shell and PANI enhances the polarization loss of core-shell Co@HCN@PANI nanocomposite. The dense conductive network formed by PANI endows the material with a more significant electronic conduction loss mechanism. Multi-layer heterogeneous interfaces in core-shell structures and multi-centers in PANI molecular chains enrich the polarization relaxation loss mechanism. The natural resonance of magnetic Co at high frequency bands and eddy current thermal effect at low frequency bands ensure the stable magnetic loss of the material. Good impedance matching and enhanced attenuation coefficient further improve the microwave absorption performance of the nanocomposite. Consequently, a minimum reflection loss of -43.63 dB and an effective absorption bandwidth of 9.75 GHz (8-17.75 GHz) are obtained at a matched thickness of 2.8 mm.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Core-shell architectures: Tailoring the electromagnetic properties for enhanced absorption
    Shao, Chenyang
    Yang, Jie
    Huang, Yujia
    Xing, Yan
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2025,
  • [2] Construction of Co/C@MoS2 core-shell nanocubes with enhanced electromagnetic-wave absorption performance
    Wang, Yizhe
    Xu, Jian
    He, Peng
    Liu, Xiaoyun
    Zuo, Peiyuan
    Ma, Wenjun
    Zhuang, Qixin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 905
  • [3] Core-Shell Structured SiO2@NiFe LDH Composite for Broadband Electromagnetic Wave Absorption
    Du, Zhilan
    Wang, Dashuang
    Zhang, Xinfang
    Yi, Zhiyu
    Tang, Jihai
    Yang, Pingan
    Cai, Rui
    Yi, Shuang
    Rao, Jinsong
    Zhang, Yuxin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (01)
  • [4] Facile manufacturing of core-shell MnO@C microspheres toward enhanced electromagnetic wave attenuation
    Mo, Pingping
    Yang, Junru
    Shui, Anze
    Qian, Junjie
    Du, Bin
    Shui, Xin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 971
  • [5] The Fabrication and High-Efficiency Electromagnetic Wave Absorption Performance of CoFe/C Core-Shell Structured Nanocomposites
    Wan, Gengping
    Luo, Yongming
    Wu, Lihong
    Wang, Guizhen
    NANOSCALE RESEARCH LETTERS, 2018, 13
  • [6] Facile synthesis of CuS@ZnO core-shell structured composite: A lightweight material with efficient electromagnetic absorption
    Zhang, Bing
    Lin, Shaofeng
    Li, Xiaopeng
    MATERIALS LETTERS, 2019, 257
  • [7] Enhanced electromagnetic wave absorption of Ni-C core-shell nanoparticles by HCP-Ni phase
    Kuang, Daitao
    Hou, Lizhen
    Wang, Shiliang
    Yu, Bowen
    Deng Lianwen
    Lin, Liangwu
    Huang, Han
    He, Jun
    Song, Min
    MATERIALS RESEARCH EXPRESS, 2018, 5 (09):
  • [8] Core-Shell Structured Silica-Coated Iron Nanowires Composites for Enhanced Electromagnetic Wave Absorption Properties
    Yang, Pingan
    Ye, Wenxian
    Ruan, Haibo
    Li, Rui
    Shou, Mengjie
    Yin, Yichen
    Huang, Xin
    Zhang, Yuxin
    Luo, Jiufei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (10)
  • [9] (00h) BaM filled core-shell Co2Y@PANI ferrite-polymer composite for enhanced microwave absorption performances
    He, Li
    Wang, Jianhong
    Zhao, Yuchen
    Liu, Jing
    Zhong, Zuting
    Zhang, Chao
    MATERIALS CHEMISTRY AND PHYSICS, 2018, 219 : 390 - 398
  • [10] Construction of SnO2 nanoparticle cluster@PANI core-shell microspheres for efficient X-band electromagnetic wave absorption
    Zhao, Jia
    Li, Ming
    Gao, Xiaogang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 915